1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00

Create a dataset using an agent (#306)

Generate a dataset using an agent (allowing to select between this and a random dataset)
This commit is contained in:
Gal Leibovich
2019-05-28 09:34:49 +03:00
committed by GitHub
parent 342b7184bc
commit 9e9c4fd332
26 changed files with 351 additions and 111 deletions

View File

@@ -685,7 +685,10 @@ class Agent(AgentInterface):
"""
loss = 0
if self._should_train():
self.training_epoch += 1
if self.ap.is_batch_rl_training:
# when training an agent for generating a dataset in batch-rl, we don't want it to be counted as part of
# the training epochs. we only care for training epochs in batch-rl anyway.
self.training_epoch += 1
for network in self.networks.values():
network.set_is_training(True)
@@ -1047,3 +1050,11 @@ class Agent(AgentInterface):
TimeTypes.EnvironmentSteps: self.total_steps_counter,
TimeTypes.WallClockTime: self.agent_logger.get_current_wall_clock_time(),
TimeTypes.Epoch: self.training_epoch}[self.parent_level_manager.parent_graph_manager.time_metric]
def freeze_memory(self):
"""
Shuffle episodes in the memory and freeze it to make sure that no extra data is being pushed anymore.
:return: None
"""
self.call_memory('shuffle_episodes')
self.call_memory('freeze')

View File

@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
@@ -83,13 +82,22 @@ class CategoricalDQNAgent(ValueOptimizationAgent):
# prediction's format is (batch,actions,atoms)
def get_all_q_values_for_states(self, states: StateType):
q_values = None
if self.exploration_policy.requires_action_values():
q_values = self.get_prediction(states,
outputs=[self.networks['main'].online_network.output_heads[0].q_values])
else:
q_values = None
return q_values
def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType):
actions_q_values, softmax_probabilities = None, None
if self.exploration_policy.requires_action_values():
outputs = [self.networks['main'].online_network.output_heads[0].q_values,
self.networks['main'].online_network.output_heads[0].softmax]
actions_q_values, softmax_probabilities = self.get_prediction(states, outputs=outputs)
return actions_q_values, softmax_probabilities
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()

View File

@@ -182,7 +182,7 @@ class DFPAgent(Agent):
action_values = None
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
action = self.exploration_policy.get_action(action_values)
action, _ = self.exploration_policy.get_action(action_values)
if action_values is not None:
action_values = action_values.squeeze()

View File

@@ -49,6 +49,7 @@ class DQNNetworkParameters(NetworkParameters):
self.batch_size = 32
self.replace_mse_with_huber_loss = True
self.create_target_network = True
self.should_get_softmax_probabilities = False
class DQNAgentParameters(AgentParameters):

View File

@@ -16,7 +16,7 @@
import os
import pickle
from typing import Union
from typing import Union, List
import numpy as np
@@ -40,6 +40,7 @@ class NECNetworkParameters(NetworkParameters):
self.middleware_parameters = FCMiddlewareParameters()
self.heads_parameters = [DNDQHeadParameters()]
self.optimizer_type = 'Adam'
self.should_get_softmax_probabilities = False
class NECAlgorithmParameters(AlgorithmParameters):
@@ -166,11 +167,25 @@ class NECAgent(ValueOptimizationAgent):
return super().act()
def get_all_q_values_for_states(self, states: StateType):
def get_all_q_values_for_states(self, states: StateType, additional_outputs: List = None):
# we need to store the state embeddings regardless if the action is random or not
return self.get_prediction(states)
return self.get_prediction_and_update_embeddings(states)
def get_prediction(self, states):
def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType):
# get the actions q values and the state embedding
embedding, actions_q_values, softmax_probabilities = self.networks['main'].online_network.predict(
self.prepare_batch_for_inference(states, 'main'),
outputs=[self.networks['main'].online_network.state_embedding,
self.networks['main'].online_network.output_heads[0].output,
self.networks['main'].online_network.output_heads[0].softmax]
)
if self.phase != RunPhase.TEST:
# store the state embedding for inserting it to the DND later
self.current_episode_state_embeddings.append(embedding.squeeze())
actions_q_values = actions_q_values[0][0]
return actions_q_values, softmax_probabilities
def get_prediction_and_update_embeddings(self, states):
# get the actions q values and the state embedding
embedding, actions_q_values = self.networks['main'].online_network.predict(
self.prepare_batch_for_inference(states, 'main'),

View File

@@ -147,7 +147,7 @@ class PolicyOptimizationAgent(Agent):
if isinstance(self.spaces.action, DiscreteActionSpace):
# DISCRETE
action_probabilities = np.array(action_values).squeeze()
action = self.exploration_policy.get_action(action_probabilities)
action, _ = self.exploration_policy.get_action(action_probabilities)
action_info = ActionInfo(action=action,
all_action_probabilities=action_probabilities)

View File

@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from copy import copy
from typing import Union
import numpy as np
@@ -79,6 +79,17 @@ class QuantileRegressionDQNAgent(ValueOptimizationAgent):
actions_q_values = None
return actions_q_values
# prediction's format is (batch,actions,atoms)
def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType):
actions_q_values, softmax_probabilities = None, None
if self.exploration_policy.requires_action_values():
outputs = copy(self.networks['main'].online_network.outputs)
outputs.append(self.networks['main'].online_network.output_heads[0].softmax)
quantile_values, softmax_probabilities = self.get_prediction(states, outputs)
actions_q_values = self.get_q_values(quantile_values)
return actions_q_values, softmax_probabilities
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()

View File

@@ -14,7 +14,7 @@
# limitations under the License.
#
from collections import OrderedDict
from typing import Union
from typing import Union, List
import numpy as np
@@ -24,7 +24,8 @@ from rl_coach.filters.filter import NoInputFilter
from rl_coach.logger import screen
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
from rl_coach.spaces import DiscreteActionSpace
from copy import deepcopy
from copy import deepcopy, copy
## This is an abstract agent - there is no learn_from_batch method ##
@@ -35,6 +36,12 @@ class ValueOptimizationAgent(Agent):
self.q_values = self.register_signal("Q")
self.q_value_for_action = {}
# currently we use softmax action probabilities only in batch-rl,
# but we might want to extend this later at some point.
self.should_get_softmax_probabilities = \
hasattr(self.ap.network_wrappers['main'], 'should_get_softmax_probabilities') and \
self.ap.network_wrappers['main'].should_get_softmax_probabilities
def init_environment_dependent_modules(self):
super().init_environment_dependent_modules()
if isinstance(self.spaces.action, DiscreteActionSpace):
@@ -45,12 +52,21 @@ class ValueOptimizationAgent(Agent):
# Algorithms for which q_values are calculated from predictions will override this function
def get_all_q_values_for_states(self, states: StateType):
actions_q_values = None
if self.exploration_policy.requires_action_values():
actions_q_values = self.get_prediction(states)
else:
actions_q_values = None
return actions_q_values
def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType):
actions_q_values, softmax_probabilities = None, None
if self.exploration_policy.requires_action_values():
outputs = copy(self.networks['main'].online_network.outputs)
outputs.append(self.networks['main'].online_network.output_heads[0].softmax)
actions_q_values, softmax_probabilities = self.get_prediction(states, outputs=outputs)
return actions_q_values, softmax_probabilities
def get_prediction(self, states, outputs=None):
return self.networks['main'].online_network.predict(self.prepare_batch_for_inference(states, 'main'),
outputs=outputs)
@@ -72,10 +88,19 @@ class ValueOptimizationAgent(Agent):
).format(policy.__class__.__name__))
def choose_action(self, curr_state):
actions_q_values = self.get_all_q_values_for_states(curr_state)
if self.should_get_softmax_probabilities:
actions_q_values, softmax_probabilities = \
self.get_all_q_values_for_states_and_softmax_probabilities(curr_state)
else:
actions_q_values = self.get_all_q_values_for_states(curr_state)
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
action = self.exploration_policy.get_action(actions_q_values)
action, action_probabilities = self.exploration_policy.get_action(actions_q_values)
if self.should_get_softmax_probabilities and softmax_probabilities is not None:
# override the exploration policy's generated probabilities when an action was taken
# with the agent's actual policy
action_probabilities = softmax_probabilities
self._validate_action(self.exploration_policy, action)
if actions_q_values is not None:
@@ -87,15 +112,18 @@ class ValueOptimizationAgent(Agent):
self.q_values.add_sample(actions_q_values)
actions_q_values = actions_q_values.squeeze()
action_probabilities = action_probabilities.squeeze()
for i, q_value in enumerate(actions_q_values):
self.q_value_for_action[i].add_sample(q_value)
action_info = ActionInfo(action=action,
action_value=actions_q_values[action],
max_action_value=np.max(actions_q_values))
max_action_value=np.max(actions_q_values),
all_action_probabilities=action_probabilities)
else:
action_info = ActionInfo(action=action)
action_info = ActionInfo(action=action, all_action_probabilities=action_probabilities)
return action_info