1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00

Create a dataset using an agent (#306)

Generate a dataset using an agent (allowing to select between this and a random dataset)
This commit is contained in:
Gal Leibovich
2019-05-28 09:34:49 +03:00
committed by GitHub
parent 342b7184bc
commit 9e9c4fd332
26 changed files with 351 additions and 111 deletions

View File

@@ -14,7 +14,7 @@
# limitations under the License.
#
from collections import OrderedDict
from typing import Union
from typing import Union, List
import numpy as np
@@ -24,7 +24,8 @@ from rl_coach.filters.filter import NoInputFilter
from rl_coach.logger import screen
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
from rl_coach.spaces import DiscreteActionSpace
from copy import deepcopy
from copy import deepcopy, copy
## This is an abstract agent - there is no learn_from_batch method ##
@@ -35,6 +36,12 @@ class ValueOptimizationAgent(Agent):
self.q_values = self.register_signal("Q")
self.q_value_for_action = {}
# currently we use softmax action probabilities only in batch-rl,
# but we might want to extend this later at some point.
self.should_get_softmax_probabilities = \
hasattr(self.ap.network_wrappers['main'], 'should_get_softmax_probabilities') and \
self.ap.network_wrappers['main'].should_get_softmax_probabilities
def init_environment_dependent_modules(self):
super().init_environment_dependent_modules()
if isinstance(self.spaces.action, DiscreteActionSpace):
@@ -45,12 +52,21 @@ class ValueOptimizationAgent(Agent):
# Algorithms for which q_values are calculated from predictions will override this function
def get_all_q_values_for_states(self, states: StateType):
actions_q_values = None
if self.exploration_policy.requires_action_values():
actions_q_values = self.get_prediction(states)
else:
actions_q_values = None
return actions_q_values
def get_all_q_values_for_states_and_softmax_probabilities(self, states: StateType):
actions_q_values, softmax_probabilities = None, None
if self.exploration_policy.requires_action_values():
outputs = copy(self.networks['main'].online_network.outputs)
outputs.append(self.networks['main'].online_network.output_heads[0].softmax)
actions_q_values, softmax_probabilities = self.get_prediction(states, outputs=outputs)
return actions_q_values, softmax_probabilities
def get_prediction(self, states, outputs=None):
return self.networks['main'].online_network.predict(self.prepare_batch_for_inference(states, 'main'),
outputs=outputs)
@@ -72,10 +88,19 @@ class ValueOptimizationAgent(Agent):
).format(policy.__class__.__name__))
def choose_action(self, curr_state):
actions_q_values = self.get_all_q_values_for_states(curr_state)
if self.should_get_softmax_probabilities:
actions_q_values, softmax_probabilities = \
self.get_all_q_values_for_states_and_softmax_probabilities(curr_state)
else:
actions_q_values = self.get_all_q_values_for_states(curr_state)
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
action = self.exploration_policy.get_action(actions_q_values)
action, action_probabilities = self.exploration_policy.get_action(actions_q_values)
if self.should_get_softmax_probabilities and softmax_probabilities is not None:
# override the exploration policy's generated probabilities when an action was taken
# with the agent's actual policy
action_probabilities = softmax_probabilities
self._validate_action(self.exploration_policy, action)
if actions_q_values is not None:
@@ -87,15 +112,18 @@ class ValueOptimizationAgent(Agent):
self.q_values.add_sample(actions_q_values)
actions_q_values = actions_q_values.squeeze()
action_probabilities = action_probabilities.squeeze()
for i, q_value in enumerate(actions_q_values):
self.q_value_for_action[i].add_sample(q_value)
action_info = ActionInfo(action=action,
action_value=actions_q_values[action],
max_action_value=np.max(actions_q_values))
max_action_value=np.max(actions_q_values),
all_action_probabilities=action_probabilities)
else:
action_info = ActionInfo(action=action)
action_info = ActionInfo(action=action, all_action_probabilities=action_probabilities)
return action_info