mirror of
https://github.com/gryf/coach.git
synced 2026-02-16 14:05:46 +01:00
Create a dataset using an agent (#306)
Generate a dataset using an agent (allowing to select between this and a random dataset)
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
from copy import deepcopy
|
||||
from rl_coach.agents.dqn_agent import DQNAgentParameters
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
@@ -45,10 +46,10 @@ agent_params.network_wrappers['main'].batch_size = 128
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
||||
DATASET_SIZE / agent_params.network_wrappers['main'].batch_size)
|
||||
#
|
||||
# agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
||||
# 3)
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
|
||||
100)
|
||||
# agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
||||
|
||||
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
|
||||
agent_params.algorithm.discount = 0.98
|
||||
|
||||
# can use either a kNN or a NN based model for predicting which actions not to max over in the bellman equation
|
||||
@@ -79,17 +80,49 @@ agent_params.network_wrappers['imitation_model'].middleware_parameters.scheme =
|
||||
|
||||
# ER size
|
||||
agent_params.memory = EpisodicExperienceReplayParameters()
|
||||
agent_params.memory.max_size = (MemoryGranularity.Transitions, DATASET_SIZE)
|
||||
|
||||
|
||||
# E-Greedy schedule
|
||||
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
|
||||
agent_params.exploration.evaluation_epsilon = 0
|
||||
|
||||
|
||||
# Input filtering
|
||||
agent_params.input_filter = InputFilter()
|
||||
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/200.))
|
||||
|
||||
|
||||
|
||||
|
||||
# Experience Generating Agent parameters
|
||||
experience_generating_agent_params = DQNAgentParameters()
|
||||
|
||||
# schedule parameters
|
||||
experience_generating_schedule_params = ScheduleParameters()
|
||||
experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000)
|
||||
experience_generating_schedule_params.improve_steps = TrainingSteps(
|
||||
DATASET_SIZE - experience_generating_schedule_params.heatup_steps.num_steps)
|
||||
experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
|
||||
experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(1)
|
||||
|
||||
# DQN params
|
||||
experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
|
||||
experience_generating_agent_params.algorithm.discount = 0.99
|
||||
experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
|
||||
|
||||
# NN configuration
|
||||
experience_generating_agent_params.network_wrappers['main'].learning_rate = 0.00025
|
||||
experience_generating_agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
|
||||
|
||||
# ER size
|
||||
experience_generating_agent_params.memory = EpisodicExperienceReplayParameters()
|
||||
experience_generating_agent_params.memory.max_size = \
|
||||
(MemoryGranularity.Transitions,
|
||||
experience_generating_schedule_params.heatup_steps.num_steps +
|
||||
experience_generating_schedule_params.improve_steps.num_steps)
|
||||
|
||||
# E-Greedy schedule
|
||||
experience_generating_agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
||||
|
||||
|
||||
################
|
||||
# Environment #
|
||||
################
|
||||
@@ -101,11 +134,14 @@ env_params = GymVectorEnvironment(level='CartPole-v0')
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = 150
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 2000
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 50
|
||||
|
||||
graph_manager = BatchRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
graph_manager = BatchRLGraphManager(agent_params=agent_params,
|
||||
experience_generating_agent_params=experience_generating_agent_params,
|
||||
experience_generating_schedule_params=experience_generating_schedule_params,
|
||||
env_params=env_params,
|
||||
schedule_params=schedule_params,
|
||||
vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
|
||||
preset_validation_params=preset_validation_params,
|
||||
reward_model_num_epochs=30,
|
||||
train_to_eval_ratio=0.8)
|
||||
train_to_eval_ratio=0.4)
|
||||
|
||||
Reference in New Issue
Block a user