mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:
* Using lazy stacking to save on memory when using a replay buffer
* Remove step counting for evaluation episodes
* Reset game between heatup and training
* Major bug fixes in NEC (is reproducing the paper results for pong now)
* Image input rescaling to 0-1 is now optional
* Change the terminal title to be the experiment name
* Observation cropping for atari is now optional
* Added random number of noop actions for gym to match the dqn paper
* Fixed a bug where the evaluation episodes won't start with the max possible ale lives
* Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
@@ -24,6 +24,8 @@ except:
|
||||
import copy
|
||||
from renderer import Renderer
|
||||
from configurations import Preset
|
||||
from collections import deque
|
||||
from utils import LazyStack
|
||||
from collections import OrderedDict
|
||||
from utils import RunPhase, Signal, is_empty, RunningStat
|
||||
from architectures import *
|
||||
@@ -214,6 +216,8 @@ class Agent(object):
|
||||
network.online_network.curr_rnn_c_in = network.online_network.middleware_embedder.c_init
|
||||
network.online_network.curr_rnn_h_in = network.online_network.middleware_embedder.h_init
|
||||
|
||||
self.prepare_initial_state()
|
||||
|
||||
def preprocess_observation(self, observation):
|
||||
"""
|
||||
Preprocesses the given observation.
|
||||
@@ -291,9 +295,8 @@ class Agent(object):
|
||||
"""
|
||||
current_states = {}
|
||||
next_states = {}
|
||||
|
||||
current_states['observation'] = np.array([transition.state['observation'] for transition in batch])
|
||||
next_states['observation'] = np.array([transition.next_state['observation'] for transition in batch])
|
||||
current_states['observation'] = np.array([np.array(transition.state['observation']) for transition in batch])
|
||||
next_states['observation'] = np.array([np.array(transition.next_state['observation']) for transition in batch])
|
||||
actions = np.array([transition.action for transition in batch])
|
||||
rewards = np.array([transition.reward for transition in batch])
|
||||
game_overs = np.array([transition.game_over for transition in batch])
|
||||
@@ -348,6 +351,23 @@ class Agent(object):
|
||||
for input_name in self.tp.agent.input_types.keys():
|
||||
input_state[input_name] = np.expand_dims(np.array(curr_state[input_name]), 0)
|
||||
return input_state
|
||||
|
||||
def prepare_initial_state(self):
|
||||
"""
|
||||
Create an initial state when starting a new episode
|
||||
:return: None
|
||||
"""
|
||||
observation = self.preprocess_observation(self.env.state['observation'])
|
||||
self.curr_stack = deque([observation]*self.tp.env.observation_stack_size, maxlen=self.tp.env.observation_stack_size)
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
|
||||
self.curr_state = {
|
||||
'observation': observation
|
||||
}
|
||||
if self.tp.agent.use_measurements:
|
||||
self.curr_state['measurements'] = self.env.measurements
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
|
||||
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
"""
|
||||
@@ -356,34 +376,12 @@ class Agent(object):
|
||||
:return: A boolean value that signals an episode termination
|
||||
"""
|
||||
|
||||
self.total_steps_counter += 1
|
||||
if phase != RunPhase.TEST:
|
||||
self.total_steps_counter += 1
|
||||
self.current_episode_steps_counter += 1
|
||||
|
||||
# get new action
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0}
|
||||
is_first_transition_in_episode = (self.curr_state == {})
|
||||
if is_first_transition_in_episode:
|
||||
if not isinstance(self.env.state, dict):
|
||||
raise ValueError((
|
||||
'expected state to be a dictionary, found {}'
|
||||
).format(type(self.env.state)))
|
||||
|
||||
state = self.env.state
|
||||
# TODO: modify preprocess_observation to modify the entire state
|
||||
# for now, only preprocess the observation
|
||||
state['observation'] = self.preprocess_observation(state['observation'])
|
||||
|
||||
# TODO: provide option to stack more than just the observation
|
||||
# TODO: this should probably be happening in an environment wrapper anyway
|
||||
state['observation'] = stack_observation([], state['observation'], self.tp.env.observation_stack_size)
|
||||
|
||||
self.curr_state = state
|
||||
if self.tp.agent.use_measurements:
|
||||
# TODO: this should be handled in the environment
|
||||
self.curr_state['measurements'] = self.env.measurements
|
||||
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0, "max_action_value": 0}
|
||||
|
||||
if phase == RunPhase.HEATUP and not self.tp.heatup_using_network_decisions:
|
||||
action = self.env.get_random_action()
|
||||
@@ -409,8 +407,10 @@ class Agent(object):
|
||||
|
||||
# initialize the next state
|
||||
# TODO: provide option to stack more than just the observation
|
||||
next_state['observation'] = stack_observation(self.curr_state['observation'], next_state['observation'], self.tp.env.observation_stack_size)
|
||||
self.curr_stack.append(next_state['observation'])
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
|
||||
next_state['observation'] = observation
|
||||
if self.tp.agent.use_measurements and 'measurements' in result.keys():
|
||||
next_state['measurements'] = result['state']['measurements']
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
@@ -516,6 +516,7 @@ class Agent(object):
|
||||
self.exploration_policy.change_phase(RunPhase.TRAIN)
|
||||
training_start_time = time.time()
|
||||
model_snapshots_periods_passed = -1
|
||||
self.reset_game()
|
||||
|
||||
while self.training_iteration < self.tp.num_training_iterations:
|
||||
# evaluate
|
||||
@@ -526,7 +527,7 @@ class Agent(object):
|
||||
self.training_iteration % self.tp.evaluate_every_x_training_iterations == 0)
|
||||
|
||||
if evaluate_agent:
|
||||
self.env.reset()
|
||||
self.env.reset(force_environment_reset=True)
|
||||
self.last_episode_evaluation_ran = self.current_episode
|
||||
self.evaluate(self.tp.evaluation_episodes)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user