mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:
* Using lazy stacking to save on memory when using a replay buffer
* Remove step counting for evaluation episodes
* Reset game between heatup and training
* Major bug fixes in NEC (is reproducing the paper results for pong now)
* Image input rescaling to 0-1 is now optional
* Change the terminal title to be the experiment name
* Observation cropping for atari is now optional
* Added random number of noop actions for gym to match the dqn paper
* Fixed a bug where the evaluation episodes won't start with the max possible ale lives
* Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
@@ -56,7 +56,8 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
# the observation can be either an image or a vector
|
||||
def get_observation_embedding(with_timestep=False):
|
||||
if self.input_height > 1:
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation")
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
|
||||
input_rescaler=self.tp.agent.input_rescaler)
|
||||
else:
|
||||
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
|
||||
|
||||
@@ -191,7 +192,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
if tuning_parameters.agent.optimizer_type == 'Adam':
|
||||
self.optimizer = tf.train.AdamOptimizer(learning_rate=tuning_parameters.learning_rate)
|
||||
elif tuning_parameters.agent.optimizer_type == 'RMSProp':
|
||||
self.optimizer = tf.train.RMSPropOptimizer(self.tp.learning_rate, decay=0.9, epsilon=0.01)
|
||||
self.optimizer = tf.train.RMSPropOptimizer(tuning_parameters.learning_rate, decay=0.9, epsilon=0.01)
|
||||
elif tuning_parameters.agent.optimizer_type == 'LBFGS':
|
||||
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.total_loss, method='L-BFGS-B',
|
||||
options={'maxiter': 25})
|
||||
|
||||
Reference in New Issue
Block a user