1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-20 00:35:56 +01:00

Multiple improvements and bug fixes (#66)

* Multiple improvements and bug fixes:

    * Using lazy stacking to save on memory when using a replay buffer
    * Remove step counting for evaluation episodes
    * Reset game between heatup and training
    * Major bug fixes in NEC (is reproducing the paper results for pong now)
    * Image input rescaling to 0-1 is now optional
    * Change the terminal title to be the experiment name
    * Observation cropping for atari is now optional
    * Added random number of noop actions for gym to match the dqn paper
    * Fixed a bug where the evaluation episodes won't start with the max possible ale lives
    * Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
Itai Caspi
2018-02-26 12:29:07 +02:00
committed by GitHub
parent 4fe9cba445
commit a7206ed702
20 changed files with 465 additions and 158 deletions

View File

@@ -83,6 +83,11 @@ class AnnoyDictionary(object):
# Returns the stored embeddings and values of the closest embeddings
def query(self, keys, k):
if not self.has_enough_entries(k):
# this will only happen when the DND is not yet populated with enough entries, which is only during heatup
# these values won't be used and therefore they are meaningless
return [0.0], [0.0], [0]
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
embeddings = []
@@ -94,7 +99,7 @@ class AnnoyDictionary(object):
self.current_timestamp += 1
return embeddings, values
return embeddings, values, indices
def has_enough_entries(self, k):
return self.curr_size > k and (self.built_capacity > k)
@@ -133,9 +138,11 @@ class AnnoyDictionary(object):
class QDND:
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01):
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01,
learning_rate=0.01):
self.num_actions = num_actions
self.dicts = []
self.learning_rate = learning_rate
# create a dict for each action
for a in range(num_actions):
@@ -155,16 +162,18 @@ class QDND:
self.dicts[a].add(curr_action_embeddings, curr_action_values)
return True
def query(self, embeddings, actions, k):
def query(self, embeddings, action, k):
# query for nearest neighbors to the given embeddings
dnd_embeddings = []
dnd_values = []
for i, action in enumerate(actions):
embedding, value = self.dicts[action].query([embeddings[i]], k)
dnd_indices = []
for i in range(len(embeddings)):
embedding, value, indices = self.dicts[action].query([embeddings[i]], k)
dnd_embeddings.append(embedding[0])
dnd_values.append(value[0])
dnd_indices.append(indices[0])
return dnd_embeddings, dnd_values
return dnd_embeddings, dnd_values, dnd_indices
def has_enough_entries(self, k):
# check if each of the action dictionaries has at least k entries
@@ -193,4 +202,5 @@ def load_dnd(model_dir):
DND.dicts[a].index.add_item(idx, key)
DND.dicts[a].index.build(50)
return DND

View File

@@ -16,6 +16,7 @@
from memories.memory import *
import threading
from typing import Union
class EpisodicExperienceReplay(Memory):
@@ -103,7 +104,8 @@ class EpisodicExperienceReplay(Memory):
if transition.game_over:
self._num_transitions_in_complete_episodes += last_episode.length()
self._length += 1
self.buffer[-1].update_returns(self.discount, is_bootstrapped=self.return_is_bootstrapped,
self.buffer[-1].update_returns(self.discount,
is_bootstrapped=self.tp.agent.bootstrap_total_return_from_old_policy,
n_step_return=self.tp.agent.n_step)
self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
# self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization
@@ -146,6 +148,17 @@ class EpisodicExperienceReplay(Memory):
def get(self, index):
return self.get_episode(index)
def get_last_complete_episode(self) -> Union[None, Episode]:
"""
Returns the last complete episode in the memory or None if there are no complete episodes
:return: None or the last complete episode
"""
last_complete_episode_index = self.num_complete_episodes()-1
if last_complete_episode_index >= 0:
return self.get(last_complete_episode_index)
else:
return None
def update_last_transition_info(self, info):
episode = self.buffer[-1]
if episode.length() == 0:

View File

@@ -80,9 +80,12 @@ class Episode(object):
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
current_discount *= discount
# calculate the bootstrapped returns
bootstraps = np.array([np.squeeze(t.info['max_action_value']) for t in self.transitions[n_step_return:]])
bootstrapped_return = total_return + current_discount * np.pad(bootstraps, (0, n_step_return), 'constant',
constant_values=0)
if is_bootstrapped:
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
total_return = bootstrapped_return
for transition_idx in range(self.length()):
self.transitions[transition_idx].total_return = total_return[transition_idx]
@@ -114,7 +117,13 @@ class Episode(object):
return self.returns_table
def get_returns(self):
return [t.total_return for t in self.transitions]
return self.get_transitions_attribute('total_return')
def get_transitions_attribute(self, attribute_name):
if hasattr(self.transitions[0], attribute_name):
return [t.__dict__[attribute_name] for t in self.transitions]
else:
raise ValueError("The transitions have no such attribute name")
def to_batch(self):
batch = []
@@ -141,14 +150,12 @@ class Transition(object):
:param game_over: A boolean which should be True if the episode terminated after
the execution of the action.
"""
self.state = copy.deepcopy(state)
self.state['observation'] = np.array(self.state['observation'], copy=False)
self.state = state
self.action = action
self.reward = reward
self.total_return = None
if not next_state:
next_state = state
self.next_state = copy.deepcopy(next_state)
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
self.next_state = next_state
self.game_over = game_over
self.info = {}