mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:
* Using lazy stacking to save on memory when using a replay buffer
* Remove step counting for evaluation episodes
* Reset game between heatup and training
* Major bug fixes in NEC (is reproducing the paper results for pong now)
* Image input rescaling to 0-1 is now optional
* Change the terminal title to be the experiment name
* Observation cropping for atari is now optional
* Added random number of noop actions for gym to match the dqn paper
* Fixed a bug where the evaluation episodes won't start with the max possible ale lives
* Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
@@ -80,9 +80,12 @@ class Episode(object):
|
||||
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
|
||||
current_discount *= discount
|
||||
|
||||
# calculate the bootstrapped returns
|
||||
bootstraps = np.array([np.squeeze(t.info['max_action_value']) for t in self.transitions[n_step_return:]])
|
||||
bootstrapped_return = total_return + current_discount * np.pad(bootstraps, (0, n_step_return), 'constant',
|
||||
constant_values=0)
|
||||
if is_bootstrapped:
|
||||
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
|
||||
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
|
||||
total_return = bootstrapped_return
|
||||
|
||||
for transition_idx in range(self.length()):
|
||||
self.transitions[transition_idx].total_return = total_return[transition_idx]
|
||||
@@ -114,7 +117,13 @@ class Episode(object):
|
||||
return self.returns_table
|
||||
|
||||
def get_returns(self):
|
||||
return [t.total_return for t in self.transitions]
|
||||
return self.get_transitions_attribute('total_return')
|
||||
|
||||
def get_transitions_attribute(self, attribute_name):
|
||||
if hasattr(self.transitions[0], attribute_name):
|
||||
return [t.__dict__[attribute_name] for t in self.transitions]
|
||||
else:
|
||||
raise ValueError("The transitions have no such attribute name")
|
||||
|
||||
def to_batch(self):
|
||||
batch = []
|
||||
@@ -141,14 +150,12 @@ class Transition(object):
|
||||
:param game_over: A boolean which should be True if the episode terminated after
|
||||
the execution of the action.
|
||||
"""
|
||||
self.state = copy.deepcopy(state)
|
||||
self.state['observation'] = np.array(self.state['observation'], copy=False)
|
||||
self.state = state
|
||||
self.action = action
|
||||
self.reward = reward
|
||||
self.total_return = None
|
||||
if not next_state:
|
||||
next_state = state
|
||||
self.next_state = copy.deepcopy(next_state)
|
||||
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
|
||||
self.next_state = next_state
|
||||
self.game_over = game_over
|
||||
self.info = {}
|
||||
|
||||
Reference in New Issue
Block a user