mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:
* Using lazy stacking to save on memory when using a replay buffer
* Remove step counting for evaluation episodes
* Reset game between heatup and training
* Major bug fixes in NEC (is reproducing the paper results for pong now)
* Image input rescaling to 0-1 is now optional
* Change the terminal title to be the experiment name
* Observation cropping for atari is now optional
* Added random number of noop actions for gym to match the dqn paper
* Fixed a bug where the evaluation episodes won't start with the max possible ale lives
* Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
105
plot_atari.py
Normal file
105
plot_atari.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import argparse
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
from dashboard import SignalsFile
|
||||
import os
|
||||
|
||||
|
||||
class FigureMaker(object):
|
||||
def __init__(self, path, cols, smoothness, signal_to_plot, x_axis):
|
||||
self.experiments_path = path
|
||||
self.environments = self.list_environments()
|
||||
self.cols = cols
|
||||
self.rows = int((len(self.environments) + cols - 1) / cols)
|
||||
self.smoothness = smoothness
|
||||
self.signal_to_plot = signal_to_plot
|
||||
self.x_axis = x_axis
|
||||
|
||||
params = {
|
||||
'axes.labelsize': 8,
|
||||
'font.size': 10,
|
||||
'legend.fontsize': 14,
|
||||
'xtick.labelsize': 8,
|
||||
'ytick.labelsize': 8,
|
||||
'text.usetex': False,
|
||||
'figure.figsize': [16, 30]
|
||||
}
|
||||
matplotlib.rcParams.update(params)
|
||||
|
||||
def list_environments(self):
|
||||
environments = sorted([e.name for e in os.scandir(args.path) if e.is_dir()])
|
||||
filtered_environments = self.filter_environments(environments)
|
||||
return filtered_environments
|
||||
|
||||
def filter_environments(self, environments):
|
||||
filtered_environments = []
|
||||
for idx, environment in enumerate(environments):
|
||||
path = os.path.join(args.path, environment)
|
||||
experiments = [e.name for e in os.scandir(path) if e.is_dir()]
|
||||
|
||||
# take only the last updated experiment directory
|
||||
last_experiment_dir = max([os.path.join(path, root) for root in experiments], key=os.path.getctime)
|
||||
|
||||
# make sure there is a csv file inside it
|
||||
for file_path in os.listdir(last_experiment_dir):
|
||||
full_file_path = os.path.join(last_experiment_dir, file_path)
|
||||
if os.path.isfile(full_file_path) and file_path.endswith('.csv'):
|
||||
filtered_environments.append((environment, full_file_path))
|
||||
|
||||
return filtered_environments
|
||||
|
||||
def plot_figures(self):
|
||||
for idx, (environment, full_file_path) in enumerate(self.environments):
|
||||
print(environment)
|
||||
axis = plt.subplot(self.rows, self.cols, idx + 1)
|
||||
signals = SignalsFile(full_file_path)
|
||||
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
|
||||
steps = signals.bokeh_source.data[self.x_axis]
|
||||
rewards = signals.bokeh_source.data[self.signal_to_plot]
|
||||
|
||||
yloc = plt.MaxNLocator(4)
|
||||
axis.yaxis.set_major_locator(yloc)
|
||||
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
|
||||
plt.title(environment, fontsize=10, y=1.08)
|
||||
plt.plot(steps, rewards, linewidth=0.8)
|
||||
plt.subplots_adjust(hspace=2.0, wspace=0.4)
|
||||
|
||||
def save_pdf(self, name):
|
||||
plt.savefig(name + ".pdf", bbox_inches='tight')
|
||||
|
||||
def show_figures(self):
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--path',
|
||||
help="(string) Root directory of the experiments",
|
||||
default=None,
|
||||
type=str)
|
||||
parser.add_argument('-c', '--cols',
|
||||
help="(int) Number of plot columns",
|
||||
default=6,
|
||||
type=int)
|
||||
parser.add_argument('-s', '--smoothness',
|
||||
help="(int) Number of consequent episodes to average over",
|
||||
default=200,
|
||||
type=int)
|
||||
parser.add_argument('-sig', '--signal',
|
||||
help="(str) The name of the signal to plot",
|
||||
default='Evaluation Reward',
|
||||
type=str)
|
||||
parser.add_argument('-x', '--x_axis',
|
||||
help="(str) The meaning of the x axis",
|
||||
default='Total steps',
|
||||
type=str)
|
||||
parser.add_argument('-pdf', '--pdf',
|
||||
help="(str) A name of a pdf to save to",
|
||||
default='atari',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
maker = FigureMaker(args.path, cols=args.cols, smoothness=args.smoothness, signal_to_plot=args.signal, x_axis=args.x_axis)
|
||||
maker.plot_figures()
|
||||
maker.save_pdf(args.pdf)
|
||||
maker.show_figures()
|
||||
Reference in New Issue
Block a user