mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Multiple improvements and bug fixes (#66)
* Multiple improvements and bug fixes:
* Using lazy stacking to save on memory when using a replay buffer
* Remove step counting for evaluation episodes
* Reset game between heatup and training
* Major bug fixes in NEC (is reproducing the paper results for pong now)
* Image input rescaling to 0-1 is now optional
* Change the terminal title to be the experiment name
* Observation cropping for atari is now optional
* Added random number of noop actions for gym to match the dqn paper
* Fixed a bug where the evaluation episodes won't start with the max possible ale lives
* Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
5
.gitignore
vendored
5
.gitignore
vendored
@@ -15,3 +15,8 @@ roboschool
|
||||
*.orig
|
||||
docs/site
|
||||
coach_env
|
||||
build
|
||||
rl_coach.egg*
|
||||
contrib
|
||||
test_log_*
|
||||
dist
|
||||
|
||||
@@ -24,6 +24,8 @@ except:
|
||||
import copy
|
||||
from renderer import Renderer
|
||||
from configurations import Preset
|
||||
from collections import deque
|
||||
from utils import LazyStack
|
||||
from collections import OrderedDict
|
||||
from utils import RunPhase, Signal, is_empty, RunningStat
|
||||
from architectures import *
|
||||
@@ -214,6 +216,8 @@ class Agent(object):
|
||||
network.online_network.curr_rnn_c_in = network.online_network.middleware_embedder.c_init
|
||||
network.online_network.curr_rnn_h_in = network.online_network.middleware_embedder.h_init
|
||||
|
||||
self.prepare_initial_state()
|
||||
|
||||
def preprocess_observation(self, observation):
|
||||
"""
|
||||
Preprocesses the given observation.
|
||||
@@ -291,9 +295,8 @@ class Agent(object):
|
||||
"""
|
||||
current_states = {}
|
||||
next_states = {}
|
||||
|
||||
current_states['observation'] = np.array([transition.state['observation'] for transition in batch])
|
||||
next_states['observation'] = np.array([transition.next_state['observation'] for transition in batch])
|
||||
current_states['observation'] = np.array([np.array(transition.state['observation']) for transition in batch])
|
||||
next_states['observation'] = np.array([np.array(transition.next_state['observation']) for transition in batch])
|
||||
actions = np.array([transition.action for transition in batch])
|
||||
rewards = np.array([transition.reward for transition in batch])
|
||||
game_overs = np.array([transition.game_over for transition in batch])
|
||||
@@ -349,6 +352,23 @@ class Agent(object):
|
||||
input_state[input_name] = np.expand_dims(np.array(curr_state[input_name]), 0)
|
||||
return input_state
|
||||
|
||||
def prepare_initial_state(self):
|
||||
"""
|
||||
Create an initial state when starting a new episode
|
||||
:return: None
|
||||
"""
|
||||
observation = self.preprocess_observation(self.env.state['observation'])
|
||||
self.curr_stack = deque([observation]*self.tp.env.observation_stack_size, maxlen=self.tp.env.observation_stack_size)
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
|
||||
self.curr_state = {
|
||||
'observation': observation
|
||||
}
|
||||
if self.tp.agent.use_measurements:
|
||||
self.curr_state['measurements'] = self.env.measurements
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
|
||||
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
"""
|
||||
Take one step in the environment according to the network prediction and store the transition in memory
|
||||
@@ -356,34 +376,12 @@ class Agent(object):
|
||||
:return: A boolean value that signals an episode termination
|
||||
"""
|
||||
|
||||
if phase != RunPhase.TEST:
|
||||
self.total_steps_counter += 1
|
||||
self.current_episode_steps_counter += 1
|
||||
|
||||
# get new action
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0}
|
||||
is_first_transition_in_episode = (self.curr_state == {})
|
||||
if is_first_transition_in_episode:
|
||||
if not isinstance(self.env.state, dict):
|
||||
raise ValueError((
|
||||
'expected state to be a dictionary, found {}'
|
||||
).format(type(self.env.state)))
|
||||
|
||||
state = self.env.state
|
||||
# TODO: modify preprocess_observation to modify the entire state
|
||||
# for now, only preprocess the observation
|
||||
state['observation'] = self.preprocess_observation(state['observation'])
|
||||
|
||||
# TODO: provide option to stack more than just the observation
|
||||
# TODO: this should probably be happening in an environment wrapper anyway
|
||||
state['observation'] = stack_observation([], state['observation'], self.tp.env.observation_stack_size)
|
||||
|
||||
self.curr_state = state
|
||||
if self.tp.agent.use_measurements:
|
||||
# TODO: this should be handled in the environment
|
||||
self.curr_state['measurements'] = self.env.measurements
|
||||
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
|
||||
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0, "max_action_value": 0}
|
||||
|
||||
if phase == RunPhase.HEATUP and not self.tp.heatup_using_network_decisions:
|
||||
action = self.env.get_random_action()
|
||||
@@ -409,8 +407,10 @@ class Agent(object):
|
||||
|
||||
# initialize the next state
|
||||
# TODO: provide option to stack more than just the observation
|
||||
next_state['observation'] = stack_observation(self.curr_state['observation'], next_state['observation'], self.tp.env.observation_stack_size)
|
||||
self.curr_stack.append(next_state['observation'])
|
||||
observation = LazyStack(self.curr_stack, -1)
|
||||
|
||||
next_state['observation'] = observation
|
||||
if self.tp.agent.use_measurements and 'measurements' in result.keys():
|
||||
next_state['measurements'] = result['state']['measurements']
|
||||
if self.tp.agent.use_accumulated_reward_as_measurement:
|
||||
@@ -516,6 +516,7 @@ class Agent(object):
|
||||
self.exploration_policy.change_phase(RunPhase.TRAIN)
|
||||
training_start_time = time.time()
|
||||
model_snapshots_periods_passed = -1
|
||||
self.reset_game()
|
||||
|
||||
while self.training_iteration < self.tp.num_training_iterations:
|
||||
# evaluate
|
||||
@@ -526,7 +527,7 @@ class Agent(object):
|
||||
self.training_iteration % self.tp.evaluate_every_x_training_iterations == 0)
|
||||
|
||||
if evaluate_agent:
|
||||
self.env.reset()
|
||||
self.env.reset(force_environment_reset=True)
|
||||
self.last_episode_evaluation_ran = self.current_episode
|
||||
self.evaluate(self.tp.evaluation_episodes)
|
||||
|
||||
|
||||
@@ -27,10 +27,7 @@ class NECAgent(ValueOptimizationAgent):
|
||||
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
||||
create_target_network=False)
|
||||
self.current_episode_state_embeddings = []
|
||||
self.current_episode_actions = []
|
||||
self.training_started = False
|
||||
# if self.tp.checkpoint_restore_dir:
|
||||
# self.load_dnd(self.tp.checkpoint_restore_dir)
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
||||
@@ -41,83 +38,57 @@ class NECAgent(ValueOptimizationAgent):
|
||||
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
|
||||
|
||||
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
|
||||
result = self.main_network.train_and_sync_networks(current_states, total_return)
|
||||
|
||||
TD_targets = self.main_network.online_network.predict(current_states)
|
||||
|
||||
# only update the action that we have actually done in this transition
|
||||
for i in range(self.tp.batch_size):
|
||||
TD_targets[i, actions[i]] = total_return[i]
|
||||
|
||||
# train the neural network
|
||||
result = self.main_network.train_and_sync_networks(current_states, TD_targets)
|
||||
|
||||
total_loss = result[0]
|
||||
|
||||
return total_loss
|
||||
|
||||
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
||||
"""
|
||||
this method modifies the superclass's behavior in only 3 ways:
|
||||
|
||||
1) the embedding is saved and stored in self.current_episode_state_embeddings
|
||||
2) the dnd output head is only called if it has a minimum number of entries in it
|
||||
ideally, the dnd had would do this on its own, but in my attempt in encoding this
|
||||
behavior in tensorflow, I ran into problems. Would definitely be worth
|
||||
revisiting in the future
|
||||
3) during training, actions are saved and stored in self.current_episode_actions
|
||||
if behaviors 1 and 2 were handled elsewhere, this could easily be implemented
|
||||
as a wrapper around super instead of overriding this method entirelysearch
|
||||
"""
|
||||
|
||||
# get embedding
|
||||
def act(self, phase=RunPhase.TRAIN):
|
||||
if self.in_heatup:
|
||||
# get embedding in heatup (otherwise we get it through choose_action)
|
||||
embedding = self.main_network.online_network.predict(
|
||||
self.tf_input_state(curr_state),
|
||||
self.tf_input_state(self.curr_state),
|
||||
outputs=self.main_network.online_network.state_embedding)
|
||||
self.current_episode_state_embeddings.append(embedding)
|
||||
|
||||
# TODO: support additional heads. Right now all other heads are ignored
|
||||
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
||||
# if there are enough entries in the DND then we can query it to get the action values
|
||||
# actions_q_values = []
|
||||
feed_dict = {
|
||||
self.main_network.online_network.state_embedding: [embedding],
|
||||
}
|
||||
actions_q_values = self.main_network.sess.run(
|
||||
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
|
||||
else:
|
||||
# get only the embedding so we can insert it to the DND
|
||||
actions_q_values = [0] * self.action_space_size
|
||||
return super().act(phase)
|
||||
|
||||
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
||||
if phase == RunPhase.TRAIN:
|
||||
action = self.exploration_policy.get_action(actions_q_values)
|
||||
# NOTE: this next line is not in the parent implementation
|
||||
# NOTE: it could be implemented as a wrapper around the parent since action is returned
|
||||
self.current_episode_actions.append(action)
|
||||
else:
|
||||
action = np.argmax(actions_q_values)
|
||||
def get_prediction(self, curr_state):
|
||||
# get the actions q values and the state embedding
|
||||
embedding, actions_q_values = self.main_network.online_network.predict(
|
||||
self.tf_input_state(curr_state),
|
||||
outputs=[self.main_network.online_network.state_embedding,
|
||||
self.main_network.online_network.output_heads[0].output]
|
||||
)
|
||||
|
||||
# store the q values statistics for logging
|
||||
self.q_values.add_sample(actions_q_values)
|
||||
|
||||
# store information for plotting interactively (actual plotting is done in agent)
|
||||
if self.tp.visualization.plot_action_values_online:
|
||||
for idx, action_name in enumerate(self.env.actions_description):
|
||||
self.episode_running_info[action_name].append(actions_q_values[idx])
|
||||
|
||||
action_value = {"action_value": actions_q_values[action]}
|
||||
return action, action_value
|
||||
# store the state embedding for inserting it to the DND later
|
||||
self.current_episode_state_embeddings.append(embedding.squeeze())
|
||||
actions_q_values = actions_q_values[0][0]
|
||||
return actions_q_values
|
||||
|
||||
def reset_game(self, do_not_reset_env=False):
|
||||
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
|
||||
super().reset_game(do_not_reset_env)
|
||||
|
||||
# make sure we already have at least one episode
|
||||
if self.memory.num_complete_episodes() >= 1 and not self.in_heatup:
|
||||
# get the last full episode that we have collected
|
||||
episode = self.memory.get(-2)
|
||||
returns = []
|
||||
for i in range(episode.length()):
|
||||
returns.append(episode.get_transition(i).total_return)
|
||||
# Just to deal with the end of heatup where there might be a case where it ends in a middle
|
||||
# of an episode, and thus when getting the episode out of the ER, it will be a complete one whereas
|
||||
# the other statistics collected here, are collected only during training.
|
||||
returns = returns[-len(self.current_episode_actions):]
|
||||
episode = self.memory.get_last_complete_episode()
|
||||
if episode is not None:
|
||||
# the indexing is only necessary because the heatup can end in the middle of an episode
|
||||
# this won't be required after fixing this so that when the heatup is ended, the episode is closed
|
||||
returns = episode.get_transitions_attribute('total_return')[:len(self.current_episode_state_embeddings)]
|
||||
actions = episode.get_transitions_attribute('action')[:len(self.current_episode_state_embeddings)]
|
||||
self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
|
||||
self.current_episode_actions, returns)
|
||||
actions, returns)
|
||||
|
||||
self.current_episode_state_embeddings = []
|
||||
self.current_episode_actions = []
|
||||
|
||||
def save_model(self, model_id):
|
||||
self.main_network.save_model(model_id)
|
||||
|
||||
@@ -73,5 +73,5 @@ class ValueOptimizationAgent(Agent):
|
||||
for idx, action_name in enumerate(self.env.actions_description):
|
||||
self.episode_running_info[action_name].append(actions_q_values[idx])
|
||||
|
||||
action_value = {"action_value": actions_q_values[action]}
|
||||
action_value = {"action_value": actions_q_values[action], "max_action_value": np.max(actions_q_values)}
|
||||
return action, action_value
|
||||
|
||||
@@ -125,14 +125,15 @@ class NetworkWrapper(object):
|
||||
"""
|
||||
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
|
||||
|
||||
def train_and_sync_networks(self, inputs, targets):
|
||||
def train_and_sync_networks(self, inputs, targets, additional_fetches=[]):
|
||||
"""
|
||||
A generic training function that enables multi-threading training using a global network if necessary.
|
||||
:param inputs: The inputs for the network.
|
||||
:param targets: The targets corresponding to the given inputs
|
||||
:param additional_fetches: Any additional tensor the user wants to fetch
|
||||
:return: The loss of the training iteration
|
||||
"""
|
||||
result = self.online_network.accumulate_gradients(inputs, targets)
|
||||
result = self.online_network.accumulate_gradients(inputs, targets, additional_fetches=additional_fetches)
|
||||
self.apply_gradients_and_sync_networks()
|
||||
return result
|
||||
|
||||
|
||||
@@ -56,7 +56,8 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
# the observation can be either an image or a vector
|
||||
def get_observation_embedding(with_timestep=False):
|
||||
if self.input_height > 1:
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation")
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
|
||||
input_rescaler=self.tp.agent.input_rescaler)
|
||||
else:
|
||||
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
|
||||
|
||||
@@ -191,7 +192,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
if tuning_parameters.agent.optimizer_type == 'Adam':
|
||||
self.optimizer = tf.train.AdamOptimizer(learning_rate=tuning_parameters.learning_rate)
|
||||
elif tuning_parameters.agent.optimizer_type == 'RMSProp':
|
||||
self.optimizer = tf.train.RMSPropOptimizer(self.tp.learning_rate, decay=0.9, epsilon=0.01)
|
||||
self.optimizer = tf.train.RMSPropOptimizer(tuning_parameters.learning_rate, decay=0.9, epsilon=0.01)
|
||||
elif tuning_parameters.agent.optimizer_type == 'LBFGS':
|
||||
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.total_loss, method='L-BFGS-B',
|
||||
options={'maxiter': 25})
|
||||
|
||||
@@ -58,6 +58,7 @@ class Head(object):
|
||||
self.regularizations = force_list(self.regularizations)
|
||||
if self.is_local:
|
||||
self.set_loss()
|
||||
self._post_build()
|
||||
|
||||
if self.is_local:
|
||||
return self.output, self.target, self.input
|
||||
@@ -76,6 +77,14 @@ class Head(object):
|
||||
"""
|
||||
pass
|
||||
|
||||
def _post_build(self):
|
||||
"""
|
||||
Optional function that allows adding any extra definitions after the head has been fully defined
|
||||
For example, this allows doing additional calculations that are based on the loss
|
||||
:return: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_name(self):
|
||||
"""
|
||||
Get a formatted name for the module
|
||||
@@ -271,6 +280,9 @@ class DNDQHead(Head):
|
||||
else:
|
||||
self.loss_type = tf.losses.mean_squared_error
|
||||
self.tp = tuning_parameters
|
||||
self.dnd_embeddings = [None]*self.num_actions
|
||||
self.dnd_values = [None]*self.num_actions
|
||||
self.dnd_indices = [None]*self.num_actions
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
# DND based Q head
|
||||
@@ -281,29 +293,29 @@ class DNDQHead(Head):
|
||||
else:
|
||||
self.DND = differentiable_neural_dictionary.QDND(
|
||||
self.DND_size, input_layer.get_shape()[-1], self.num_actions, self.new_value_shift_coefficient,
|
||||
key_error_threshold=self.DND_key_error_threshold)
|
||||
key_error_threshold=self.DND_key_error_threshold, learning_rate=self.tp.learning_rate)
|
||||
|
||||
# Retrieve info from DND dictionary
|
||||
# self.action = tf.placeholder(tf.int8, [None], name="action")
|
||||
# self.input = self.action
|
||||
self.output = [
|
||||
# We assume that all actions have enough entries in the DND
|
||||
self.output = tf.transpose([
|
||||
self._q_value(input_layer, action)
|
||||
for action in range(self.num_actions)
|
||||
]
|
||||
])
|
||||
|
||||
def _q_value(self, input_layer, action):
|
||||
result = tf.py_func(self.DND.query,
|
||||
[input_layer, [action], self.number_of_nn],
|
||||
[tf.float64, tf.float64])
|
||||
dnd_embeddings = tf.to_float(result[0])
|
||||
dnd_values = tf.to_float(result[1])
|
||||
[input_layer, action, self.number_of_nn],
|
||||
[tf.float64, tf.float64, tf.int64])
|
||||
self.dnd_embeddings[action] = tf.to_float(result[0])
|
||||
self.dnd_values[action] = tf.to_float(result[1])
|
||||
self.dnd_indices[action] = result[2]
|
||||
|
||||
# DND calculation
|
||||
square_diff = tf.square(dnd_embeddings - tf.expand_dims(input_layer, 1))
|
||||
square_diff = tf.square(self.dnd_embeddings[action] - tf.expand_dims(input_layer, 1))
|
||||
distances = tf.reduce_sum(square_diff, axis=2) + [self.l2_norm_added_delta]
|
||||
weights = 1.0 / distances
|
||||
normalised_weights = weights / tf.reduce_sum(weights, axis=1, keep_dims=True)
|
||||
return tf.reduce_sum(dnd_values * normalised_weights, axis=1)
|
||||
return tf.reduce_sum(self.dnd_values[action] * normalised_weights, axis=1)
|
||||
|
||||
|
||||
class NAFHead(Head):
|
||||
|
||||
@@ -116,6 +116,14 @@ python3 coach.py -p Doom_Health_MMC -r
|
||||
|
||||
## NEC
|
||||
|
||||
## Pong_NEC
|
||||
|
||||
```bash
|
||||
python3 coach.py -p Pong_NEC -r
|
||||
```
|
||||
|
||||
<img src="img/Pong_NEC.png" alt="Pong_NEC" width="400"/>
|
||||
|
||||
## Doom_Basic_NEC
|
||||
|
||||
```bash
|
||||
|
||||
BIN
benchmarks/img/Pong_NEC.png
Normal file
BIN
benchmarks/img/Pong_NEC.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 21 KiB |
12
coach.py
12
coach.py
@@ -34,11 +34,6 @@ import sys
|
||||
import subprocess
|
||||
from threading import Thread
|
||||
|
||||
try:
|
||||
from Queue import Queue, Empty
|
||||
except ImportError:
|
||||
from queue import Queue, Empty # for Python 3.x
|
||||
|
||||
if len(set(failed_imports)) > 0:
|
||||
screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(failed_imports))))
|
||||
|
||||
@@ -258,7 +253,8 @@ if __name__ == "__main__":
|
||||
# dump documentation
|
||||
logger.set_dump_dir(run_dict['experiment_path'], add_timestamp=True)
|
||||
if not args.no_summary:
|
||||
atexit.register(logger.print_summary)
|
||||
atexit.register(logger.summarize_experiment)
|
||||
screen.change_terminal_title(logger.experiment_name)
|
||||
|
||||
# Single-threaded runs
|
||||
if run_dict['num_threads'] == 1:
|
||||
@@ -300,7 +296,7 @@ if __name__ == "__main__":
|
||||
"--worker_hosts={}".format(worker_hosts),
|
||||
"--job_name=ps",
|
||||
]
|
||||
parameter_server = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1)
|
||||
parameter_server = Popen(cmd)
|
||||
|
||||
screen.log_title("*** Distributed Training ***")
|
||||
time.sleep(1)
|
||||
@@ -325,7 +321,7 @@ if __name__ == "__main__":
|
||||
"--job_name=worker",
|
||||
"--load_json={}".format(json_run_dict_path)]
|
||||
|
||||
p = Popen(workers_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1)
|
||||
p = Popen(workers_args)
|
||||
|
||||
if i != run_dict['num_threads']:
|
||||
workers.append(p)
|
||||
|
||||
@@ -115,6 +115,7 @@ class AgentParameters(Parameters):
|
||||
replace_mse_with_huber_loss = False
|
||||
load_memory_from_file_path = None
|
||||
collect_new_data = True
|
||||
input_rescaler = 255.0
|
||||
|
||||
# PPO related params
|
||||
target_kl_divergence = 0.01
|
||||
@@ -154,6 +155,8 @@ class EnvironmentParameters(Parameters):
|
||||
desired_observation_width = 76
|
||||
desired_observation_height = 60
|
||||
normalize_observation = False
|
||||
crop_observation = False
|
||||
random_initialization_steps = 0
|
||||
reward_scaling = 1.0
|
||||
reward_clipping_min = None
|
||||
reward_clipping_max = None
|
||||
@@ -290,6 +293,8 @@ class Atari(EnvironmentParameters):
|
||||
desired_observation_width = 84
|
||||
reward_clipping_max = 1.0
|
||||
reward_clipping_min = -1.0
|
||||
random_initialization_steps = 30
|
||||
crop_observation = False # in the original paper the observation is cropped but not in the Nature paper
|
||||
|
||||
|
||||
class Doom(EnvironmentParameters):
|
||||
@@ -355,6 +360,7 @@ class DQN(AgentParameters):
|
||||
|
||||
class DDQN(DQN):
|
||||
type = 'DDQNAgent'
|
||||
num_steps_between_copying_online_weights_to_target = 30000
|
||||
|
||||
|
||||
class DuelingDQN(DQN):
|
||||
@@ -384,17 +390,19 @@ class QuantileRegressionDQN(DQN):
|
||||
|
||||
class NEC(AgentParameters):
|
||||
type = 'NECAgent'
|
||||
optimizer_type = 'RMSProp'
|
||||
optimizer_type = 'Adam'
|
||||
input_types = {'observation': InputTypes.Observation}
|
||||
output_types = [OutputTypes.DNDQ]
|
||||
loss_weights = [1.0]
|
||||
dnd_size = 500000
|
||||
l2_norm_added_delta = 0.001
|
||||
new_value_shift_coefficient = 0.1
|
||||
new_value_shift_coefficient = 0.1 # alpha
|
||||
number_of_knn = 50
|
||||
n_step = 100
|
||||
bootstrap_total_return_from_old_policy = True
|
||||
DND_key_error_threshold = 0.1
|
||||
DND_key_error_threshold = 0
|
||||
input_rescaler = 1.0
|
||||
num_consecutive_playing_steps = 4
|
||||
|
||||
|
||||
class ActorCritic(AgentParameters):
|
||||
|
||||
@@ -19,6 +19,7 @@ from logger import *
|
||||
import gym
|
||||
import numpy as np
|
||||
import time
|
||||
import random
|
||||
try:
|
||||
import roboschool
|
||||
from OpenGL import GL
|
||||
@@ -59,7 +60,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
# self.env_spec = gym.spec(self.env_id)
|
||||
self.env.frameskip = self.frame_skip
|
||||
self.discrete_controls = type(self.env.action_space) != gym.spaces.box.Box
|
||||
|
||||
self.random_initialization_steps = 0
|
||||
self.state = self.reset(True)['state']
|
||||
|
||||
# render
|
||||
@@ -113,6 +114,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
else:
|
||||
self.timestep_limit = None
|
||||
self.measurements_size = len(self.step(0)['info'].keys())
|
||||
self.random_initialization_steps = self.tp.env.random_initialization_steps
|
||||
|
||||
def _wrap_state(self, state):
|
||||
if isinstance(self.env.observation_space, gym.spaces.Dict):
|
||||
@@ -155,8 +157,9 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
|
||||
def _preprocess_state(self, state):
|
||||
# TODO: move this into wrapper
|
||||
if any(env in self.env_id for env in ["Breakout", "Pong"]):
|
||||
# crop image
|
||||
# crop image for atari games
|
||||
# the image from the environment is 210x160
|
||||
if self.tp.env.crop_observation and hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
||||
state['observation'] = state['observation'][34:195, :, :]
|
||||
return state
|
||||
|
||||
@@ -170,7 +173,16 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
|
||||
self.env.seed(self.seed)
|
||||
|
||||
self.state = self._wrap_state(self.env.reset())
|
||||
while self.state is None:
|
||||
|
||||
# initialize the number of lives
|
||||
if hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
|
||||
self.current_ale_lives = self.env.env.ale.lives()
|
||||
|
||||
# simulate a random initial environment state by stepping for a random number of times between 0 and 30
|
||||
step_count = 0
|
||||
random_initialization_steps = random.randint(0, self.random_initialization_steps)
|
||||
while self.state is None or step_count < random_initialization_steps:
|
||||
step_count += 1
|
||||
self.step(0)
|
||||
|
||||
return self.state
|
||||
|
||||
21
logger.py
21
logger.py
@@ -115,6 +115,14 @@ class ScreenLogger(object):
|
||||
if default is not None:
|
||||
return default
|
||||
|
||||
def change_terminal_title(self, title: str):
|
||||
"""
|
||||
Changes the title of the terminal window
|
||||
:param title: The new title
|
||||
:return: None
|
||||
"""
|
||||
print("\x1b]2;{}\x07".format(title))
|
||||
|
||||
|
||||
class BaseLogger(object):
|
||||
def __init__(self):
|
||||
@@ -157,6 +165,7 @@ class Logger(BaseLogger):
|
||||
self.time = None
|
||||
self.experiments_path = ""
|
||||
self.last_line_idx_written_to_csv = 0
|
||||
self.experiment_name = ""
|
||||
|
||||
def set_current_time(self, time):
|
||||
self.time = time
|
||||
@@ -205,7 +214,9 @@ class Logger(BaseLogger):
|
||||
|
||||
def signal_value_exists(self, time, signal_name):
|
||||
try:
|
||||
self.get_signal_value(time, signal_name)
|
||||
value = self.get_signal_value(time, signal_name)
|
||||
if value != value: # value is nan
|
||||
return False
|
||||
except:
|
||||
return False
|
||||
return True
|
||||
@@ -229,7 +240,8 @@ class Logger(BaseLogger):
|
||||
if self.start_time:
|
||||
self.create_signal_value('Wall-Clock Time', time.time() - self.start_time, time=episode)
|
||||
else:
|
||||
self.create_signal_value('Wall-Clock Time', time.time(), time=episode)
|
||||
self.create_signal_value('Wall-Clock Time', 0, time=episode)
|
||||
self.start_time = time.time()
|
||||
|
||||
def create_gif(self, images, fps=10, name="Gif"):
|
||||
output_file = '{}_{}.gif'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S'), name)
|
||||
@@ -243,7 +255,7 @@ class Logger(BaseLogger):
|
||||
def remove_experiment_dir(self):
|
||||
shutil.rmtree(self.experiments_path)
|
||||
|
||||
def print_summary(self):
|
||||
def summarize_experiment(self):
|
||||
screen.separator()
|
||||
screen.log_title("Results stored at: {}".format(self.experiments_path))
|
||||
screen.log_title("Total runtime: {}".format(datetime.datetime.now() - self.time_started))
|
||||
@@ -273,7 +285,8 @@ class Logger(BaseLogger):
|
||||
screen.error('Experiment name must be composed only of alphanumeric letters, '
|
||||
'underscores and dashes and should not be longer than 100 characters.')
|
||||
|
||||
return match.group(0)
|
||||
self.experiment_name = match.group(0)
|
||||
return self.experiment_name
|
||||
|
||||
def get_experiment_path(self, experiment_name, create_path=True):
|
||||
general_experiments_path = os.path.join('./experiments/', experiment_name)
|
||||
|
||||
@@ -83,6 +83,11 @@ class AnnoyDictionary(object):
|
||||
|
||||
# Returns the stored embeddings and values of the closest embeddings
|
||||
def query(self, keys, k):
|
||||
if not self.has_enough_entries(k):
|
||||
# this will only happen when the DND is not yet populated with enough entries, which is only during heatup
|
||||
# these values won't be used and therefore they are meaningless
|
||||
return [0.0], [0.0], [0]
|
||||
|
||||
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
|
||||
|
||||
embeddings = []
|
||||
@@ -94,7 +99,7 @@ class AnnoyDictionary(object):
|
||||
|
||||
self.current_timestamp += 1
|
||||
|
||||
return embeddings, values
|
||||
return embeddings, values, indices
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
return self.curr_size > k and (self.built_capacity > k)
|
||||
@@ -133,9 +138,11 @@ class AnnoyDictionary(object):
|
||||
|
||||
|
||||
class QDND:
|
||||
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01):
|
||||
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01,
|
||||
learning_rate=0.01):
|
||||
self.num_actions = num_actions
|
||||
self.dicts = []
|
||||
self.learning_rate = learning_rate
|
||||
|
||||
# create a dict for each action
|
||||
for a in range(num_actions):
|
||||
@@ -155,16 +162,18 @@ class QDND:
|
||||
self.dicts[a].add(curr_action_embeddings, curr_action_values)
|
||||
return True
|
||||
|
||||
def query(self, embeddings, actions, k):
|
||||
def query(self, embeddings, action, k):
|
||||
# query for nearest neighbors to the given embeddings
|
||||
dnd_embeddings = []
|
||||
dnd_values = []
|
||||
for i, action in enumerate(actions):
|
||||
embedding, value = self.dicts[action].query([embeddings[i]], k)
|
||||
dnd_indices = []
|
||||
for i in range(len(embeddings)):
|
||||
embedding, value, indices = self.dicts[action].query([embeddings[i]], k)
|
||||
dnd_embeddings.append(embedding[0])
|
||||
dnd_values.append(value[0])
|
||||
dnd_indices.append(indices[0])
|
||||
|
||||
return dnd_embeddings, dnd_values
|
||||
return dnd_embeddings, dnd_values, dnd_indices
|
||||
|
||||
def has_enough_entries(self, k):
|
||||
# check if each of the action dictionaries has at least k entries
|
||||
@@ -193,4 +202,5 @@ def load_dnd(model_dir):
|
||||
DND.dicts[a].index.add_item(idx, key)
|
||||
|
||||
DND.dicts[a].index.build(50)
|
||||
|
||||
return DND
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
|
||||
from memories.memory import *
|
||||
import threading
|
||||
from typing import Union
|
||||
|
||||
|
||||
class EpisodicExperienceReplay(Memory):
|
||||
@@ -103,7 +104,8 @@ class EpisodicExperienceReplay(Memory):
|
||||
if transition.game_over:
|
||||
self._num_transitions_in_complete_episodes += last_episode.length()
|
||||
self._length += 1
|
||||
self.buffer[-1].update_returns(self.discount, is_bootstrapped=self.return_is_bootstrapped,
|
||||
self.buffer[-1].update_returns(self.discount,
|
||||
is_bootstrapped=self.tp.agent.bootstrap_total_return_from_old_policy,
|
||||
n_step_return=self.tp.agent.n_step)
|
||||
self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
|
||||
# self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization
|
||||
@@ -146,6 +148,17 @@ class EpisodicExperienceReplay(Memory):
|
||||
def get(self, index):
|
||||
return self.get_episode(index)
|
||||
|
||||
def get_last_complete_episode(self) -> Union[None, Episode]:
|
||||
"""
|
||||
Returns the last complete episode in the memory or None if there are no complete episodes
|
||||
:return: None or the last complete episode
|
||||
"""
|
||||
last_complete_episode_index = self.num_complete_episodes()-1
|
||||
if last_complete_episode_index >= 0:
|
||||
return self.get(last_complete_episode_index)
|
||||
else:
|
||||
return None
|
||||
|
||||
def update_last_transition_info(self, info):
|
||||
episode = self.buffer[-1]
|
||||
if episode.length() == 0:
|
||||
|
||||
@@ -80,9 +80,12 @@ class Episode(object):
|
||||
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
|
||||
current_discount *= discount
|
||||
|
||||
# calculate the bootstrapped returns
|
||||
bootstraps = np.array([np.squeeze(t.info['max_action_value']) for t in self.transitions[n_step_return:]])
|
||||
bootstrapped_return = total_return + current_discount * np.pad(bootstraps, (0, n_step_return), 'constant',
|
||||
constant_values=0)
|
||||
if is_bootstrapped:
|
||||
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
|
||||
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
|
||||
total_return = bootstrapped_return
|
||||
|
||||
for transition_idx in range(self.length()):
|
||||
self.transitions[transition_idx].total_return = total_return[transition_idx]
|
||||
@@ -114,7 +117,13 @@ class Episode(object):
|
||||
return self.returns_table
|
||||
|
||||
def get_returns(self):
|
||||
return [t.total_return for t in self.transitions]
|
||||
return self.get_transitions_attribute('total_return')
|
||||
|
||||
def get_transitions_attribute(self, attribute_name):
|
||||
if hasattr(self.transitions[0], attribute_name):
|
||||
return [t.__dict__[attribute_name] for t in self.transitions]
|
||||
else:
|
||||
raise ValueError("The transitions have no such attribute name")
|
||||
|
||||
def to_batch(self):
|
||||
batch = []
|
||||
@@ -141,14 +150,12 @@ class Transition(object):
|
||||
:param game_over: A boolean which should be True if the episode terminated after
|
||||
the execution of the action.
|
||||
"""
|
||||
self.state = copy.deepcopy(state)
|
||||
self.state['observation'] = np.array(self.state['observation'], copy=False)
|
||||
self.state = state
|
||||
self.action = action
|
||||
self.reward = reward
|
||||
self.total_return = None
|
||||
if not next_state:
|
||||
next_state = state
|
||||
self.next_state = copy.deepcopy(next_state)
|
||||
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
|
||||
self.next_state = next_state
|
||||
self.game_over = game_over
|
||||
self.info = {}
|
||||
|
||||
105
plot_atari.py
Normal file
105
plot_atari.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import argparse
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
from dashboard import SignalsFile
|
||||
import os
|
||||
|
||||
|
||||
class FigureMaker(object):
|
||||
def __init__(self, path, cols, smoothness, signal_to_plot, x_axis):
|
||||
self.experiments_path = path
|
||||
self.environments = self.list_environments()
|
||||
self.cols = cols
|
||||
self.rows = int((len(self.environments) + cols - 1) / cols)
|
||||
self.smoothness = smoothness
|
||||
self.signal_to_plot = signal_to_plot
|
||||
self.x_axis = x_axis
|
||||
|
||||
params = {
|
||||
'axes.labelsize': 8,
|
||||
'font.size': 10,
|
||||
'legend.fontsize': 14,
|
||||
'xtick.labelsize': 8,
|
||||
'ytick.labelsize': 8,
|
||||
'text.usetex': False,
|
||||
'figure.figsize': [16, 30]
|
||||
}
|
||||
matplotlib.rcParams.update(params)
|
||||
|
||||
def list_environments(self):
|
||||
environments = sorted([e.name for e in os.scandir(args.path) if e.is_dir()])
|
||||
filtered_environments = self.filter_environments(environments)
|
||||
return filtered_environments
|
||||
|
||||
def filter_environments(self, environments):
|
||||
filtered_environments = []
|
||||
for idx, environment in enumerate(environments):
|
||||
path = os.path.join(args.path, environment)
|
||||
experiments = [e.name for e in os.scandir(path) if e.is_dir()]
|
||||
|
||||
# take only the last updated experiment directory
|
||||
last_experiment_dir = max([os.path.join(path, root) for root in experiments], key=os.path.getctime)
|
||||
|
||||
# make sure there is a csv file inside it
|
||||
for file_path in os.listdir(last_experiment_dir):
|
||||
full_file_path = os.path.join(last_experiment_dir, file_path)
|
||||
if os.path.isfile(full_file_path) and file_path.endswith('.csv'):
|
||||
filtered_environments.append((environment, full_file_path))
|
||||
|
||||
return filtered_environments
|
||||
|
||||
def plot_figures(self):
|
||||
for idx, (environment, full_file_path) in enumerate(self.environments):
|
||||
print(environment)
|
||||
axis = plt.subplot(self.rows, self.cols, idx + 1)
|
||||
signals = SignalsFile(full_file_path)
|
||||
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
|
||||
steps = signals.bokeh_source.data[self.x_axis]
|
||||
rewards = signals.bokeh_source.data[self.signal_to_plot]
|
||||
|
||||
yloc = plt.MaxNLocator(4)
|
||||
axis.yaxis.set_major_locator(yloc)
|
||||
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
|
||||
plt.title(environment, fontsize=10, y=1.08)
|
||||
plt.plot(steps, rewards, linewidth=0.8)
|
||||
plt.subplots_adjust(hspace=2.0, wspace=0.4)
|
||||
|
||||
def save_pdf(self, name):
|
||||
plt.savefig(name + ".pdf", bbox_inches='tight')
|
||||
|
||||
def show_figures(self):
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--path',
|
||||
help="(string) Root directory of the experiments",
|
||||
default=None,
|
||||
type=str)
|
||||
parser.add_argument('-c', '--cols',
|
||||
help="(int) Number of plot columns",
|
||||
default=6,
|
||||
type=int)
|
||||
parser.add_argument('-s', '--smoothness',
|
||||
help="(int) Number of consequent episodes to average over",
|
||||
default=200,
|
||||
type=int)
|
||||
parser.add_argument('-sig', '--signal',
|
||||
help="(str) The name of the signal to plot",
|
||||
default='Evaluation Reward',
|
||||
type=str)
|
||||
parser.add_argument('-x', '--x_axis',
|
||||
help="(str) The meaning of the x axis",
|
||||
default='Total steps',
|
||||
type=str)
|
||||
parser.add_argument('-pdf', '--pdf',
|
||||
help="(str) A name of a pdf to save to",
|
||||
default='atari',
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
maker = FigureMaker(args.path, cols=args.cols, smoothness=args.smoothness, signal_to_plot=args.signal, x_axis=args.x_axis)
|
||||
maker.plot_figures()
|
||||
maker.save_pdf(args.pdf)
|
||||
maker.show_figures()
|
||||
139
presets.py
139
presets.py
@@ -89,7 +89,6 @@ class Doom_Basic_QRDQN(Preset):
|
||||
self.num_heatup_steps = 1000
|
||||
|
||||
|
||||
|
||||
class Doom_Basic_OneStepQ(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
|
||||
@@ -408,8 +407,67 @@ class Breakout_DQN(Preset):
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.05
|
||||
self.num_heatup_steps = 50000
|
||||
self.agent.num_consecutive_playing_steps = 4
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 100
|
||||
self.evaluate_every_x_episodes = 25
|
||||
self.agent.replace_mse_with_huber_loss = True
|
||||
# self.env.crop_observation = True # TODO: remove
|
||||
# self.rescaling_interpolation_type = 'nearest' # TODO: remove
|
||||
|
||||
|
||||
class Breakout_DDQN(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
|
||||
self.env.level = 'BreakoutDeterministic-v4'
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 30000
|
||||
self.learning_rate = 0.00025
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.exploration.initial_epsilon = 1.0
|
||||
self.exploration.final_epsilon = 0.01
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.001
|
||||
self.num_heatup_steps = 50000
|
||||
self.agent.num_consecutive_playing_steps = 4
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 25
|
||||
self.agent.replace_mse_with_huber_loss = True
|
||||
|
||||
|
||||
class Breakout_Dueling_DDQN(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
|
||||
self.env.level = 'BreakoutDeterministic-v4'
|
||||
self.agent.output_types = [OutputTypes.DuelingQ]
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 30000
|
||||
self.learning_rate = 0.00025
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.exploration.initial_epsilon = 1.0
|
||||
self.exploration.final_epsilon = 0.01
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.001
|
||||
self.num_heatup_steps = 50000
|
||||
self.agent.num_consecutive_playing_steps = 4
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 25
|
||||
self.agent.replace_mse_with_huber_loss = True
|
||||
|
||||
class Alien_DQN(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, DQN, Atari, ExplorationParameters)
|
||||
self.env.level = 'AlienDeterministic-v4'
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
||||
self.learning_rate = 0.00025
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.exploration.initial_epsilon = 1.0
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.05
|
||||
self.num_heatup_steps = 50000
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 5
|
||||
|
||||
|
||||
class Breakout_C51(Preset):
|
||||
@@ -846,7 +904,8 @@ class CartPole_NEC(Preset):
|
||||
self.num_heatup_steps = 1000
|
||||
self.exploration.epsilon_decay_steps = 1000
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.agent.discount = 1.0
|
||||
self.agent.discount = 0.99
|
||||
self.seed = 0
|
||||
|
||||
self.test = True
|
||||
self.test_max_step_threshold = 200
|
||||
@@ -857,10 +916,16 @@ class Doom_Basic_NEC(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Doom, ExplorationParameters)
|
||||
self.env.level = 'basic'
|
||||
self.agent.num_episodes_in_experience_replay = 200
|
||||
self.learning_rate = 0.00025
|
||||
self.num_heatup_steps = 1000
|
||||
self.agent.num_playing_steps_between_two_training_steps = 1
|
||||
self.learning_rate = 0.00001
|
||||
self.agent.num_transitions_in_experience_replay = 100000
|
||||
# self.exploration.initial_epsilon = 0.1 # TODO: try exploration
|
||||
# self.exploration.final_epsilon = 0.1
|
||||
# self.exploration.epsilon_decay_steps = 1000000
|
||||
self.num_heatup_steps = 200
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 5
|
||||
self.seed = 123
|
||||
|
||||
|
||||
|
||||
class Montezuma_NEC(Preset):
|
||||
@@ -877,12 +942,20 @@ class Breakout_NEC(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
||||
self.env.level = 'BreakoutDeterministic-v4'
|
||||
self.learning_rate = 0.00025
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
||||
self.learning_rate = 0.00001
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.exploration.initial_epsilon = 1.0
|
||||
self.exploration.initial_epsilon = 0.1
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.num_heatup_steps = 50000
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.05
|
||||
self.num_heatup_steps = 1000
|
||||
self.env.reward_clipping_max = None
|
||||
self.env.reward_clipping_min = None
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 25
|
||||
self.seed = 123
|
||||
|
||||
|
||||
class Doom_Health_NEC(Preset):
|
||||
@@ -924,12 +997,54 @@ class Pong_NEC(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
||||
self.env.level = 'PongDeterministic-v4'
|
||||
self.learning_rate = 0.001
|
||||
self.learning_rate = 0.00001
|
||||
self.agent.num_transitions_in_experience_replay = 100000
|
||||
self.exploration.initial_epsilon = 0.5
|
||||
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.num_heatup_steps = 2000
|
||||
self.env.reward_clipping_max = None
|
||||
self.env.reward_clipping_min = None
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 5
|
||||
self.env.crop_observation = True # TODO: remove
|
||||
self.env.random_initialization_steps = 1 # TODO: remove
|
||||
# self.seed = 123
|
||||
|
||||
|
||||
class Alien_NEC(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, NEC, Atari, ExplorationParameters)
|
||||
self.env.level = 'AlienDeterministic-v4'
|
||||
self.learning_rate = 0.0001
|
||||
self.agent.num_transitions_in_experience_replay = 100000
|
||||
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.num_heatup_steps = 3000
|
||||
self.env.reward_clipping_max = None
|
||||
self.env.reward_clipping_min = None
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 5
|
||||
self.seed = 123
|
||||
|
||||
|
||||
class Pong_DQN(Preset):
|
||||
def __init__(self):
|
||||
Preset.__init__(self, DQN, Atari, ExplorationParameters)
|
||||
self.env.level = 'PongDeterministic-v4'
|
||||
self.agent.num_steps_between_copying_online_weights_to_target = 10000
|
||||
self.learning_rate = 0.00025
|
||||
self.agent.num_transitions_in_experience_replay = 1000000
|
||||
self.exploration.initial_epsilon = 1.0
|
||||
self.exploration.final_epsilon = 0.1
|
||||
self.exploration.epsilon_decay_steps = 1000000
|
||||
self.exploration.evaluation_policy = 'EGreedy'
|
||||
self.exploration.evaluation_epsilon = 0.05
|
||||
self.num_heatup_steps = 50000
|
||||
self.evaluation_episodes = 1
|
||||
self.evaluate_every_x_episodes = 5
|
||||
self.seed = 123
|
||||
|
||||
|
||||
class CartPole_A3C(Preset):
|
||||
|
||||
11
run_test.py
11
run_test.py
@@ -50,6 +50,9 @@ if __name__ == '__main__':
|
||||
parser.add_argument('-v', '--verbose',
|
||||
help="(flag) display verbose logs in the event of an error",
|
||||
action='store_true')
|
||||
parser.add_argument('-l', '--list_presets',
|
||||
help="(flag) list all the presets that are tested",
|
||||
action='store_true')
|
||||
parser.add_argument('--stop_after_first_failure',
|
||||
help="(flag) stop executing tests after the first error",
|
||||
action='store_true')
|
||||
@@ -73,6 +76,14 @@ if __name__ == '__main__':
|
||||
presets_to_ignore = args.ignore_presets.split(',')
|
||||
else:
|
||||
presets_to_ignore = []
|
||||
|
||||
if args.list_presets:
|
||||
for idx, preset_name in enumerate(presets_lists):
|
||||
preset = eval('presets.{}()'.format(preset_name))
|
||||
if preset.test and preset_name not in presets_to_ignore:
|
||||
print(preset_name)
|
||||
exit(0)
|
||||
|
||||
for idx, preset_name in enumerate(presets_lists):
|
||||
preset = eval('presets.{}()'.format(preset_name))
|
||||
if preset.test and preset_name not in presets_to_ignore:
|
||||
|
||||
18
utils.py
18
utils.py
@@ -21,6 +21,7 @@ import numpy as np
|
||||
import threading
|
||||
from subprocess import call, Popen
|
||||
import signal
|
||||
import copy
|
||||
|
||||
killed_processes = []
|
||||
|
||||
@@ -333,6 +334,23 @@ def switch_axes_order(observation, from_type='channels_first', to_type='channels
|
||||
return np.transpose(observation, (1, 0))
|
||||
|
||||
|
||||
class LazyStack(object):
|
||||
"""
|
||||
A lazy version of np.stack which avoids copying the memory until it is
|
||||
needed.
|
||||
"""
|
||||
|
||||
def __init__(self, history, axis=None):
|
||||
self.history = copy.copy(history)
|
||||
self.axis = axis
|
||||
|
||||
def __array__(self, dtype=None):
|
||||
array = np.stack(self.history, axis=self.axis)
|
||||
if dtype is not None:
|
||||
array = array.astype(dtype)
|
||||
return array
|
||||
|
||||
|
||||
def stack_observation(curr_stack, observation, stack_size):
|
||||
"""
|
||||
Adds a new observation to an existing stack of observations from previous time-steps.
|
||||
|
||||
Reference in New Issue
Block a user