1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00

Multiple improvements and bug fixes (#66)

* Multiple improvements and bug fixes:

    * Using lazy stacking to save on memory when using a replay buffer
    * Remove step counting for evaluation episodes
    * Reset game between heatup and training
    * Major bug fixes in NEC (is reproducing the paper results for pong now)
    * Image input rescaling to 0-1 is now optional
    * Change the terminal title to be the experiment name
    * Observation cropping for atari is now optional
    * Added random number of noop actions for gym to match the dqn paper
    * Fixed a bug where the evaluation episodes won't start with the max possible ale lives
    * Added a script for plotting the results of an experiment over all the atari games
This commit is contained in:
Itai Caspi
2018-02-26 12:29:07 +02:00
committed by GitHub
parent 4fe9cba445
commit a7206ed702
20 changed files with 465 additions and 158 deletions

5
.gitignore vendored
View File

@@ -15,3 +15,8 @@ roboschool
*.orig
docs/site
coach_env
build
rl_coach.egg*
contrib
test_log_*
dist

View File

@@ -24,6 +24,8 @@ except:
import copy
from renderer import Renderer
from configurations import Preset
from collections import deque
from utils import LazyStack
from collections import OrderedDict
from utils import RunPhase, Signal, is_empty, RunningStat
from architectures import *
@@ -214,6 +216,8 @@ class Agent(object):
network.online_network.curr_rnn_c_in = network.online_network.middleware_embedder.c_init
network.online_network.curr_rnn_h_in = network.online_network.middleware_embedder.h_init
self.prepare_initial_state()
def preprocess_observation(self, observation):
"""
Preprocesses the given observation.
@@ -291,9 +295,8 @@ class Agent(object):
"""
current_states = {}
next_states = {}
current_states['observation'] = np.array([transition.state['observation'] for transition in batch])
next_states['observation'] = np.array([transition.next_state['observation'] for transition in batch])
current_states['observation'] = np.array([np.array(transition.state['observation']) for transition in batch])
next_states['observation'] = np.array([np.array(transition.next_state['observation']) for transition in batch])
actions = np.array([transition.action for transition in batch])
rewards = np.array([transition.reward for transition in batch])
game_overs = np.array([transition.game_over for transition in batch])
@@ -349,6 +352,23 @@ class Agent(object):
input_state[input_name] = np.expand_dims(np.array(curr_state[input_name]), 0)
return input_state
def prepare_initial_state(self):
"""
Create an initial state when starting a new episode
:return: None
"""
observation = self.preprocess_observation(self.env.state['observation'])
self.curr_stack = deque([observation]*self.tp.env.observation_stack_size, maxlen=self.tp.env.observation_stack_size)
observation = LazyStack(self.curr_stack, -1)
self.curr_state = {
'observation': observation
}
if self.tp.agent.use_measurements:
self.curr_state['measurements'] = self.env.measurements
if self.tp.agent.use_accumulated_reward_as_measurement:
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
def act(self, phase=RunPhase.TRAIN):
"""
Take one step in the environment according to the network prediction and store the transition in memory
@@ -356,34 +376,12 @@ class Agent(object):
:return: A boolean value that signals an episode termination
"""
self.total_steps_counter += 1
if phase != RunPhase.TEST:
self.total_steps_counter += 1
self.current_episode_steps_counter += 1
# get new action
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0}
is_first_transition_in_episode = (self.curr_state == {})
if is_first_transition_in_episode:
if not isinstance(self.env.state, dict):
raise ValueError((
'expected state to be a dictionary, found {}'
).format(type(self.env.state)))
state = self.env.state
# TODO: modify preprocess_observation to modify the entire state
# for now, only preprocess the observation
state['observation'] = self.preprocess_observation(state['observation'])
# TODO: provide option to stack more than just the observation
# TODO: this should probably be happening in an environment wrapper anyway
state['observation'] = stack_observation([], state['observation'], self.tp.env.observation_stack_size)
self.curr_state = state
if self.tp.agent.use_measurements:
# TODO: this should be handled in the environment
self.curr_state['measurements'] = self.env.measurements
if self.tp.agent.use_accumulated_reward_as_measurement:
self.curr_state['measurements'] = np.append(self.curr_state['measurements'], 0)
action_info = {"action_probability": 1.0 / self.env.action_space_size, "action_value": 0, "max_action_value": 0}
if phase == RunPhase.HEATUP and not self.tp.heatup_using_network_decisions:
action = self.env.get_random_action()
@@ -409,8 +407,10 @@ class Agent(object):
# initialize the next state
# TODO: provide option to stack more than just the observation
next_state['observation'] = stack_observation(self.curr_state['observation'], next_state['observation'], self.tp.env.observation_stack_size)
self.curr_stack.append(next_state['observation'])
observation = LazyStack(self.curr_stack, -1)
next_state['observation'] = observation
if self.tp.agent.use_measurements and 'measurements' in result.keys():
next_state['measurements'] = result['state']['measurements']
if self.tp.agent.use_accumulated_reward_as_measurement:
@@ -516,6 +516,7 @@ class Agent(object):
self.exploration_policy.change_phase(RunPhase.TRAIN)
training_start_time = time.time()
model_snapshots_periods_passed = -1
self.reset_game()
while self.training_iteration < self.tp.num_training_iterations:
# evaluate
@@ -526,7 +527,7 @@ class Agent(object):
self.training_iteration % self.tp.evaluate_every_x_training_iterations == 0)
if evaluate_agent:
self.env.reset()
self.env.reset(force_environment_reset=True)
self.last_episode_evaluation_ran = self.current_episode
self.evaluate(self.tp.evaluation_episodes)

View File

@@ -27,10 +27,7 @@ class NECAgent(ValueOptimizationAgent):
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=False)
self.current_episode_state_embeddings = []
self.current_episode_actions = []
self.training_started = False
# if self.tp.checkpoint_restore_dir:
# self.load_dnd(self.tp.checkpoint_restore_dir)
def learn_from_batch(self, batch):
if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
@@ -41,83 +38,57 @@ class NECAgent(ValueOptimizationAgent):
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
result = self.main_network.train_and_sync_networks(current_states, total_return)
TD_targets = self.main_network.online_network.predict(current_states)
# only update the action that we have actually done in this transition
for i in range(self.tp.batch_size):
TD_targets[i, actions[i]] = total_return[i]
# train the neural network
result = self.main_network.train_and_sync_networks(current_states, TD_targets)
total_loss = result[0]
return total_loss
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
"""
this method modifies the superclass's behavior in only 3 ways:
def act(self, phase=RunPhase.TRAIN):
if self.in_heatup:
# get embedding in heatup (otherwise we get it through choose_action)
embedding = self.main_network.online_network.predict(
self.tf_input_state(self.curr_state),
outputs=self.main_network.online_network.state_embedding)
self.current_episode_state_embeddings.append(embedding)
1) the embedding is saved and stored in self.current_episode_state_embeddings
2) the dnd output head is only called if it has a minimum number of entries in it
ideally, the dnd had would do this on its own, but in my attempt in encoding this
behavior in tensorflow, I ran into problems. Would definitely be worth
revisiting in the future
3) during training, actions are saved and stored in self.current_episode_actions
if behaviors 1 and 2 were handled elsewhere, this could easily be implemented
as a wrapper around super instead of overriding this method entirelysearch
"""
return super().act(phase)
# get embedding
embedding = self.main_network.online_network.predict(
def get_prediction(self, curr_state):
# get the actions q values and the state embedding
embedding, actions_q_values = self.main_network.online_network.predict(
self.tf_input_state(curr_state),
outputs=self.main_network.online_network.state_embedding)
self.current_episode_state_embeddings.append(embedding)
outputs=[self.main_network.online_network.state_embedding,
self.main_network.online_network.output_heads[0].output]
)
# TODO: support additional heads. Right now all other heads are ignored
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
# if there are enough entries in the DND then we can query it to get the action values
# actions_q_values = []
feed_dict = {
self.main_network.online_network.state_embedding: [embedding],
}
actions_q_values = self.main_network.sess.run(
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
else:
# get only the embedding so we can insert it to the DND
actions_q_values = [0] * self.action_space_size
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(actions_q_values)
# NOTE: this next line is not in the parent implementation
# NOTE: it could be implemented as a wrapper around the parent since action is returned
self.current_episode_actions.append(action)
else:
action = np.argmax(actions_q_values)
# store the q values statistics for logging
self.q_values.add_sample(actions_q_values)
# store information for plotting interactively (actual plotting is done in agent)
if self.tp.visualization.plot_action_values_online:
for idx, action_name in enumerate(self.env.actions_description):
self.episode_running_info[action_name].append(actions_q_values[idx])
action_value = {"action_value": actions_q_values[action]}
return action, action_value
# store the state embedding for inserting it to the DND later
self.current_episode_state_embeddings.append(embedding.squeeze())
actions_q_values = actions_q_values[0][0]
return actions_q_values
def reset_game(self, do_not_reset_env=False):
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
super().reset_game(do_not_reset_env)
# make sure we already have at least one episode
if self.memory.num_complete_episodes() >= 1 and not self.in_heatup:
# get the last full episode that we have collected
episode = self.memory.get(-2)
returns = []
for i in range(episode.length()):
returns.append(episode.get_transition(i).total_return)
# Just to deal with the end of heatup where there might be a case where it ends in a middle
# of an episode, and thus when getting the episode out of the ER, it will be a complete one whereas
# the other statistics collected here, are collected only during training.
returns = returns[-len(self.current_episode_actions):]
# get the last full episode that we have collected
episode = self.memory.get_last_complete_episode()
if episode is not None:
# the indexing is only necessary because the heatup can end in the middle of an episode
# this won't be required after fixing this so that when the heatup is ended, the episode is closed
returns = episode.get_transitions_attribute('total_return')[:len(self.current_episode_state_embeddings)]
actions = episode.get_transitions_attribute('action')[:len(self.current_episode_state_embeddings)]
self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
self.current_episode_actions, returns)
actions, returns)
self.current_episode_state_embeddings = []
self.current_episode_actions = []
def save_model(self, model_id):
self.main_network.save_model(model_id)

View File

@@ -73,5 +73,5 @@ class ValueOptimizationAgent(Agent):
for idx, action_name in enumerate(self.env.actions_description):
self.episode_running_info[action_name].append(actions_q_values[idx])
action_value = {"action_value": actions_q_values[action]}
action_value = {"action_value": actions_q_values[action], "max_action_value": np.max(actions_q_values)}
return action, action_value

View File

@@ -125,14 +125,15 @@ class NetworkWrapper(object):
"""
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
def train_and_sync_networks(self, inputs, targets):
def train_and_sync_networks(self, inputs, targets, additional_fetches=[]):
"""
A generic training function that enables multi-threading training using a global network if necessary.
:param inputs: The inputs for the network.
:param targets: The targets corresponding to the given inputs
:param additional_fetches: Any additional tensor the user wants to fetch
:return: The loss of the training iteration
"""
result = self.online_network.accumulate_gradients(inputs, targets)
result = self.online_network.accumulate_gradients(inputs, targets, additional_fetches=additional_fetches)
self.apply_gradients_and_sync_networks()
return result

View File

@@ -56,7 +56,8 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
# the observation can be either an image or a vector
def get_observation_embedding(with_timestep=False):
if self.input_height > 1:
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation")
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
input_rescaler=self.tp.agent.input_rescaler)
else:
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
@@ -191,7 +192,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
if tuning_parameters.agent.optimizer_type == 'Adam':
self.optimizer = tf.train.AdamOptimizer(learning_rate=tuning_parameters.learning_rate)
elif tuning_parameters.agent.optimizer_type == 'RMSProp':
self.optimizer = tf.train.RMSPropOptimizer(self.tp.learning_rate, decay=0.9, epsilon=0.01)
self.optimizer = tf.train.RMSPropOptimizer(tuning_parameters.learning_rate, decay=0.9, epsilon=0.01)
elif tuning_parameters.agent.optimizer_type == 'LBFGS':
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.total_loss, method='L-BFGS-B',
options={'maxiter': 25})

View File

@@ -57,7 +57,8 @@ class Head(object):
self.loss = force_list(self.loss)
self.regularizations = force_list(self.regularizations)
if self.is_local:
self.set_loss()
self.set_loss()
self._post_build()
if self.is_local:
return self.output, self.target, self.input
@@ -76,6 +77,14 @@ class Head(object):
"""
pass
def _post_build(self):
"""
Optional function that allows adding any extra definitions after the head has been fully defined
For example, this allows doing additional calculations that are based on the loss
:return: None
"""
pass
def get_name(self):
"""
Get a formatted name for the module
@@ -271,6 +280,9 @@ class DNDQHead(Head):
else:
self.loss_type = tf.losses.mean_squared_error
self.tp = tuning_parameters
self.dnd_embeddings = [None]*self.num_actions
self.dnd_values = [None]*self.num_actions
self.dnd_indices = [None]*self.num_actions
def _build_module(self, input_layer):
# DND based Q head
@@ -281,29 +293,29 @@ class DNDQHead(Head):
else:
self.DND = differentiable_neural_dictionary.QDND(
self.DND_size, input_layer.get_shape()[-1], self.num_actions, self.new_value_shift_coefficient,
key_error_threshold=self.DND_key_error_threshold)
key_error_threshold=self.DND_key_error_threshold, learning_rate=self.tp.learning_rate)
# Retrieve info from DND dictionary
# self.action = tf.placeholder(tf.int8, [None], name="action")
# self.input = self.action
self.output = [
# We assume that all actions have enough entries in the DND
self.output = tf.transpose([
self._q_value(input_layer, action)
for action in range(self.num_actions)
]
])
def _q_value(self, input_layer, action):
result = tf.py_func(self.DND.query,
[input_layer, [action], self.number_of_nn],
[tf.float64, tf.float64])
dnd_embeddings = tf.to_float(result[0])
dnd_values = tf.to_float(result[1])
[input_layer, action, self.number_of_nn],
[tf.float64, tf.float64, tf.int64])
self.dnd_embeddings[action] = tf.to_float(result[0])
self.dnd_values[action] = tf.to_float(result[1])
self.dnd_indices[action] = result[2]
# DND calculation
square_diff = tf.square(dnd_embeddings - tf.expand_dims(input_layer, 1))
square_diff = tf.square(self.dnd_embeddings[action] - tf.expand_dims(input_layer, 1))
distances = tf.reduce_sum(square_diff, axis=2) + [self.l2_norm_added_delta]
weights = 1.0 / distances
normalised_weights = weights / tf.reduce_sum(weights, axis=1, keep_dims=True)
return tf.reduce_sum(dnd_values * normalised_weights, axis=1)
return tf.reduce_sum(self.dnd_values[action] * normalised_weights, axis=1)
class NAFHead(Head):

View File

@@ -116,6 +116,14 @@ python3 coach.py -p Doom_Health_MMC -r
## NEC
## Pong_NEC
```bash
python3 coach.py -p Pong_NEC -r
```
<img src="img/Pong_NEC.png" alt="Pong_NEC" width="400"/>
## Doom_Basic_NEC
```bash

BIN
benchmarks/img/Pong_NEC.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

View File

@@ -34,11 +34,6 @@ import sys
import subprocess
from threading import Thread
try:
from Queue import Queue, Empty
except ImportError:
from queue import Queue, Empty # for Python 3.x
if len(set(failed_imports)) > 0:
screen.warning("Warning: failed to import the following packages - {}".format(', '.join(set(failed_imports))))
@@ -258,7 +253,8 @@ if __name__ == "__main__":
# dump documentation
logger.set_dump_dir(run_dict['experiment_path'], add_timestamp=True)
if not args.no_summary:
atexit.register(logger.print_summary)
atexit.register(logger.summarize_experiment)
screen.change_terminal_title(logger.experiment_name)
# Single-threaded runs
if run_dict['num_threads'] == 1:
@@ -300,7 +296,7 @@ if __name__ == "__main__":
"--worker_hosts={}".format(worker_hosts),
"--job_name=ps",
]
parameter_server = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1)
parameter_server = Popen(cmd)
screen.log_title("*** Distributed Training ***")
time.sleep(1)
@@ -325,7 +321,7 @@ if __name__ == "__main__":
"--job_name=worker",
"--load_json={}".format(json_run_dict_path)]
p = Popen(workers_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1)
p = Popen(workers_args)
if i != run_dict['num_threads']:
workers.append(p)

View File

@@ -115,6 +115,7 @@ class AgentParameters(Parameters):
replace_mse_with_huber_loss = False
load_memory_from_file_path = None
collect_new_data = True
input_rescaler = 255.0
# PPO related params
target_kl_divergence = 0.01
@@ -154,6 +155,8 @@ class EnvironmentParameters(Parameters):
desired_observation_width = 76
desired_observation_height = 60
normalize_observation = False
crop_observation = False
random_initialization_steps = 0
reward_scaling = 1.0
reward_clipping_min = None
reward_clipping_max = None
@@ -290,6 +293,8 @@ class Atari(EnvironmentParameters):
desired_observation_width = 84
reward_clipping_max = 1.0
reward_clipping_min = -1.0
random_initialization_steps = 30
crop_observation = False # in the original paper the observation is cropped but not in the Nature paper
class Doom(EnvironmentParameters):
@@ -355,6 +360,7 @@ class DQN(AgentParameters):
class DDQN(DQN):
type = 'DDQNAgent'
num_steps_between_copying_online_weights_to_target = 30000
class DuelingDQN(DQN):
@@ -384,17 +390,19 @@ class QuantileRegressionDQN(DQN):
class NEC(AgentParameters):
type = 'NECAgent'
optimizer_type = 'RMSProp'
optimizer_type = 'Adam'
input_types = {'observation': InputTypes.Observation}
output_types = [OutputTypes.DNDQ]
loss_weights = [1.0]
dnd_size = 500000
l2_norm_added_delta = 0.001
new_value_shift_coefficient = 0.1
new_value_shift_coefficient = 0.1 # alpha
number_of_knn = 50
n_step = 100
bootstrap_total_return_from_old_policy = True
DND_key_error_threshold = 0.1
DND_key_error_threshold = 0
input_rescaler = 1.0
num_consecutive_playing_steps = 4
class ActorCritic(AgentParameters):

View File

@@ -19,6 +19,7 @@ from logger import *
import gym
import numpy as np
import time
import random
try:
import roboschool
from OpenGL import GL
@@ -59,7 +60,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
# self.env_spec = gym.spec(self.env_id)
self.env.frameskip = self.frame_skip
self.discrete_controls = type(self.env.action_space) != gym.spaces.box.Box
self.random_initialization_steps = 0
self.state = self.reset(True)['state']
# render
@@ -113,6 +114,7 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
else:
self.timestep_limit = None
self.measurements_size = len(self.step(0)['info'].keys())
self.random_initialization_steps = self.tp.env.random_initialization_steps
def _wrap_state(self, state):
if isinstance(self.env.observation_space, gym.spaces.Dict):
@@ -155,8 +157,9 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
def _preprocess_state(self, state):
# TODO: move this into wrapper
if any(env in self.env_id for env in ["Breakout", "Pong"]):
# crop image
# crop image for atari games
# the image from the environment is 210x160
if self.tp.env.crop_observation and hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
state['observation'] = state['observation'][34:195, :, :]
return state
@@ -170,7 +173,16 @@ class GymEnvironmentWrapper(EnvironmentWrapper):
self.env.seed(self.seed)
self.state = self._wrap_state(self.env.reset())
while self.state is None:
# initialize the number of lives
if hasattr(self.env, 'env') and hasattr(self.env.env, 'ale'):
self.current_ale_lives = self.env.env.ale.lives()
# simulate a random initial environment state by stepping for a random number of times between 0 and 30
step_count = 0
random_initialization_steps = random.randint(0, self.random_initialization_steps)
while self.state is None or step_count < random_initialization_steps:
step_count += 1
self.step(0)
return self.state

View File

@@ -115,6 +115,14 @@ class ScreenLogger(object):
if default is not None:
return default
def change_terminal_title(self, title: str):
"""
Changes the title of the terminal window
:param title: The new title
:return: None
"""
print("\x1b]2;{}\x07".format(title))
class BaseLogger(object):
def __init__(self):
@@ -157,6 +165,7 @@ class Logger(BaseLogger):
self.time = None
self.experiments_path = ""
self.last_line_idx_written_to_csv = 0
self.experiment_name = ""
def set_current_time(self, time):
self.time = time
@@ -205,7 +214,9 @@ class Logger(BaseLogger):
def signal_value_exists(self, time, signal_name):
try:
self.get_signal_value(time, signal_name)
value = self.get_signal_value(time, signal_name)
if value != value: # value is nan
return False
except:
return False
return True
@@ -229,7 +240,8 @@ class Logger(BaseLogger):
if self.start_time:
self.create_signal_value('Wall-Clock Time', time.time() - self.start_time, time=episode)
else:
self.create_signal_value('Wall-Clock Time', time.time(), time=episode)
self.create_signal_value('Wall-Clock Time', 0, time=episode)
self.start_time = time.time()
def create_gif(self, images, fps=10, name="Gif"):
output_file = '{}_{}.gif'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S'), name)
@@ -243,7 +255,7 @@ class Logger(BaseLogger):
def remove_experiment_dir(self):
shutil.rmtree(self.experiments_path)
def print_summary(self):
def summarize_experiment(self):
screen.separator()
screen.log_title("Results stored at: {}".format(self.experiments_path))
screen.log_title("Total runtime: {}".format(datetime.datetime.now() - self.time_started))
@@ -273,7 +285,8 @@ class Logger(BaseLogger):
screen.error('Experiment name must be composed only of alphanumeric letters, '
'underscores and dashes and should not be longer than 100 characters.')
return match.group(0)
self.experiment_name = match.group(0)
return self.experiment_name
def get_experiment_path(self, experiment_name, create_path=True):
general_experiments_path = os.path.join('./experiments/', experiment_name)

View File

@@ -83,6 +83,11 @@ class AnnoyDictionary(object):
# Returns the stored embeddings and values of the closest embeddings
def query(self, keys, k):
if not self.has_enough_entries(k):
# this will only happen when the DND is not yet populated with enough entries, which is only during heatup
# these values won't be used and therefore they are meaningless
return [0.0], [0.0], [0]
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
embeddings = []
@@ -94,7 +99,7 @@ class AnnoyDictionary(object):
self.current_timestamp += 1
return embeddings, values
return embeddings, values, indices
def has_enough_entries(self, k):
return self.curr_size > k and (self.built_capacity > k)
@@ -133,9 +138,11 @@ class AnnoyDictionary(object):
class QDND:
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01):
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01,
learning_rate=0.01):
self.num_actions = num_actions
self.dicts = []
self.learning_rate = learning_rate
# create a dict for each action
for a in range(num_actions):
@@ -155,16 +162,18 @@ class QDND:
self.dicts[a].add(curr_action_embeddings, curr_action_values)
return True
def query(self, embeddings, actions, k):
def query(self, embeddings, action, k):
# query for nearest neighbors to the given embeddings
dnd_embeddings = []
dnd_values = []
for i, action in enumerate(actions):
embedding, value = self.dicts[action].query([embeddings[i]], k)
dnd_indices = []
for i in range(len(embeddings)):
embedding, value, indices = self.dicts[action].query([embeddings[i]], k)
dnd_embeddings.append(embedding[0])
dnd_values.append(value[0])
dnd_indices.append(indices[0])
return dnd_embeddings, dnd_values
return dnd_embeddings, dnd_values, dnd_indices
def has_enough_entries(self, k):
# check if each of the action dictionaries has at least k entries
@@ -193,4 +202,5 @@ def load_dnd(model_dir):
DND.dicts[a].index.add_item(idx, key)
DND.dicts[a].index.build(50)
return DND

View File

@@ -16,6 +16,7 @@
from memories.memory import *
import threading
from typing import Union
class EpisodicExperienceReplay(Memory):
@@ -103,7 +104,8 @@ class EpisodicExperienceReplay(Memory):
if transition.game_over:
self._num_transitions_in_complete_episodes += last_episode.length()
self._length += 1
self.buffer[-1].update_returns(self.discount, is_bootstrapped=self.return_is_bootstrapped,
self.buffer[-1].update_returns(self.discount,
is_bootstrapped=self.tp.agent.bootstrap_total_return_from_old_policy,
n_step_return=self.tp.agent.n_step)
self.buffer[-1].update_measurements_targets(self.tp.agent.num_predicted_steps_ahead)
# self.buffer[-1].update_actions_probabilities() # used for off-policy policy optimization
@@ -146,6 +148,17 @@ class EpisodicExperienceReplay(Memory):
def get(self, index):
return self.get_episode(index)
def get_last_complete_episode(self) -> Union[None, Episode]:
"""
Returns the last complete episode in the memory or None if there are no complete episodes
:return: None or the last complete episode
"""
last_complete_episode_index = self.num_complete_episodes()-1
if last_complete_episode_index >= 0:
return self.get(last_complete_episode_index)
else:
return None
def update_last_transition_info(self, info):
episode = self.buffer[-1]
if episode.length() == 0:

View File

@@ -80,9 +80,12 @@ class Episode(object):
total_return += current_discount * np.pad(rewards[i:], (0, i), 'constant', constant_values=0)
current_discount *= discount
# calculate the bootstrapped returns
bootstraps = np.array([np.squeeze(t.info['max_action_value']) for t in self.transitions[n_step_return:]])
bootstrapped_return = total_return + current_discount * np.pad(bootstraps, (0, n_step_return), 'constant',
constant_values=0)
if is_bootstrapped:
bootstraps = np.array([np.squeeze(t.info['action_value']) for t in self.transitions[n_step_return:]])
total_return += current_discount * np.pad(bootstraps, (0, n_step_return), 'constant', constant_values=0)
total_return = bootstrapped_return
for transition_idx in range(self.length()):
self.transitions[transition_idx].total_return = total_return[transition_idx]
@@ -114,7 +117,13 @@ class Episode(object):
return self.returns_table
def get_returns(self):
return [t.total_return for t in self.transitions]
return self.get_transitions_attribute('total_return')
def get_transitions_attribute(self, attribute_name):
if hasattr(self.transitions[0], attribute_name):
return [t.__dict__[attribute_name] for t in self.transitions]
else:
raise ValueError("The transitions have no such attribute name")
def to_batch(self):
batch = []
@@ -141,14 +150,12 @@ class Transition(object):
:param game_over: A boolean which should be True if the episode terminated after
the execution of the action.
"""
self.state = copy.deepcopy(state)
self.state['observation'] = np.array(self.state['observation'], copy=False)
self.state = state
self.action = action
self.reward = reward
self.total_return = None
if not next_state:
next_state = state
self.next_state = copy.deepcopy(next_state)
self.next_state['observation'] = np.array(self.next_state['observation'], copy=False)
self.next_state = next_state
self.game_over = game_over
self.info = {}

105
plot_atari.py Normal file
View File

@@ -0,0 +1,105 @@
import argparse
import matplotlib
import matplotlib.pyplot as plt
from dashboard import SignalsFile
import os
class FigureMaker(object):
def __init__(self, path, cols, smoothness, signal_to_plot, x_axis):
self.experiments_path = path
self.environments = self.list_environments()
self.cols = cols
self.rows = int((len(self.environments) + cols - 1) / cols)
self.smoothness = smoothness
self.signal_to_plot = signal_to_plot
self.x_axis = x_axis
params = {
'axes.labelsize': 8,
'font.size': 10,
'legend.fontsize': 14,
'xtick.labelsize': 8,
'ytick.labelsize': 8,
'text.usetex': False,
'figure.figsize': [16, 30]
}
matplotlib.rcParams.update(params)
def list_environments(self):
environments = sorted([e.name for e in os.scandir(args.path) if e.is_dir()])
filtered_environments = self.filter_environments(environments)
return filtered_environments
def filter_environments(self, environments):
filtered_environments = []
for idx, environment in enumerate(environments):
path = os.path.join(args.path, environment)
experiments = [e.name for e in os.scandir(path) if e.is_dir()]
# take only the last updated experiment directory
last_experiment_dir = max([os.path.join(path, root) for root in experiments], key=os.path.getctime)
# make sure there is a csv file inside it
for file_path in os.listdir(last_experiment_dir):
full_file_path = os.path.join(last_experiment_dir, file_path)
if os.path.isfile(full_file_path) and file_path.endswith('.csv'):
filtered_environments.append((environment, full_file_path))
return filtered_environments
def plot_figures(self):
for idx, (environment, full_file_path) in enumerate(self.environments):
print(environment)
axis = plt.subplot(self.rows, self.cols, idx + 1)
signals = SignalsFile(full_file_path)
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
steps = signals.bokeh_source.data[self.x_axis]
rewards = signals.bokeh_source.data[self.signal_to_plot]
yloc = plt.MaxNLocator(4)
axis.yaxis.set_major_locator(yloc)
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
plt.title(environment, fontsize=10, y=1.08)
plt.plot(steps, rewards, linewidth=0.8)
plt.subplots_adjust(hspace=2.0, wspace=0.4)
def save_pdf(self, name):
plt.savefig(name + ".pdf", bbox_inches='tight')
def show_figures(self):
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--path',
help="(string) Root directory of the experiments",
default=None,
type=str)
parser.add_argument('-c', '--cols',
help="(int) Number of plot columns",
default=6,
type=int)
parser.add_argument('-s', '--smoothness',
help="(int) Number of consequent episodes to average over",
default=200,
type=int)
parser.add_argument('-sig', '--signal',
help="(str) The name of the signal to plot",
default='Evaluation Reward',
type=str)
parser.add_argument('-x', '--x_axis',
help="(str) The meaning of the x axis",
default='Total steps',
type=str)
parser.add_argument('-pdf', '--pdf',
help="(str) A name of a pdf to save to",
default='atari',
type=str)
args = parser.parse_args()
maker = FigureMaker(args.path, cols=args.cols, smoothness=args.smoothness, signal_to_plot=args.signal, x_axis=args.x_axis)
maker.plot_figures()
maker.save_pdf(args.pdf)
maker.show_figures()

View File

@@ -89,7 +89,6 @@ class Doom_Basic_QRDQN(Preset):
self.num_heatup_steps = 1000
class Doom_Basic_OneStepQ(Preset):
def __init__(self):
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
@@ -408,8 +407,67 @@ class Breakout_DQN(Preset):
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 100
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
# self.env.crop_observation = True # TODO: remove
# self.rescaling_interpolation_type = 'nearest' # TODO: remove
class Breakout_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 30000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
class Breakout_Dueling_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.output_types = [OutputTypes.DuelingQ]
self.agent.num_steps_between_copying_online_weights_to_target = 30000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
class Alien_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'AlienDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
class Breakout_C51(Preset):
@@ -846,7 +904,8 @@ class CartPole_NEC(Preset):
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 1000
self.exploration.final_epsilon = 0.1
self.agent.discount = 1.0
self.agent.discount = 0.99
self.seed = 0
self.test = True
self.test_max_step_threshold = 200
@@ -857,10 +916,16 @@ class Doom_Basic_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.agent.num_playing_steps_between_two_training_steps = 1
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 100000
# self.exploration.initial_epsilon = 0.1 # TODO: try exploration
# self.exploration.final_epsilon = 0.1
# self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 200
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class Montezuma_NEC(Preset):
@@ -877,12 +942,20 @@ class Breakout_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.initial_epsilon = 0.1
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 50000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 1000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.seed = 123
class Doom_Health_NEC(Preset):
@@ -924,12 +997,54 @@ class Pong_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'PongDeterministic-v4'
self.learning_rate = 0.001
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 100000
self.exploration.initial_epsilon = 0.5
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 2000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.env.crop_observation = True # TODO: remove
self.env.random_initialization_steps = 1 # TODO: remove
# self.seed = 123
class Alien_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'AlienDeterministic-v4'
self.learning_rate = 0.0001
self.agent.num_transitions_in_experience_replay = 100000
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 3000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class Pong_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'PongDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class CartPole_A3C(Preset):

View File

@@ -50,6 +50,9 @@ if __name__ == '__main__':
parser.add_argument('-v', '--verbose',
help="(flag) display verbose logs in the event of an error",
action='store_true')
parser.add_argument('-l', '--list_presets',
help="(flag) list all the presets that are tested",
action='store_true')
parser.add_argument('--stop_after_first_failure',
help="(flag) stop executing tests after the first error",
action='store_true')
@@ -73,6 +76,14 @@ if __name__ == '__main__':
presets_to_ignore = args.ignore_presets.split(',')
else:
presets_to_ignore = []
if args.list_presets:
for idx, preset_name in enumerate(presets_lists):
preset = eval('presets.{}()'.format(preset_name))
if preset.test and preset_name not in presets_to_ignore:
print(preset_name)
exit(0)
for idx, preset_name in enumerate(presets_lists):
preset = eval('presets.{}()'.format(preset_name))
if preset.test and preset_name not in presets_to_ignore:

View File

@@ -21,6 +21,7 @@ import numpy as np
import threading
from subprocess import call, Popen
import signal
import copy
killed_processes = []
@@ -333,6 +334,23 @@ def switch_axes_order(observation, from_type='channels_first', to_type='channels
return np.transpose(observation, (1, 0))
class LazyStack(object):
"""
A lazy version of np.stack which avoids copying the memory until it is
needed.
"""
def __init__(self, history, axis=None):
self.history = copy.copy(history)
self.axis = axis
def __array__(self, dtype=None):
array = np.stack(self.history, axis=self.axis)
if dtype is not None:
array = array.astype(dtype)
return array
def stack_observation(curr_stack, observation, stack_size):
"""
Adds a new observation to an existing stack of observations from previous time-steps.