mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 19:50:17 +01:00
Adding should_train helper and should_train in graph_manager
This commit is contained in:
committed by
zach dwiel
parent
a2e57a44f1
commit
a7f5442015
75
rl_coach/presets/CartPole_PPO.py
Normal file
75
rl_coach/presets/CartPole_PPO.py
Normal file
@@ -0,0 +1,75 @@
|
||||
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
|
||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
||||
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection
|
||||
from rl_coach.environments.gym_environment import Mujoco, mujoco_v2, MujocoInputFilter
|
||||
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
from rl_coach.graph_managers.graph_manager import ScheduleParameters
|
||||
from rl_coach.schedules import LinearSchedule
|
||||
|
||||
####################
|
||||
# Graph Scheduling #
|
||||
####################
|
||||
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = TrainingSteps(10000000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(2048)
|
||||
schedule_params.evaluation_steps = EnvironmentEpisodes(5)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(0)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = ClippedPPOAgentParameters()
|
||||
|
||||
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0003
|
||||
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'tanh'
|
||||
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense([64])]
|
||||
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([64])]
|
||||
agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'tanh'
|
||||
agent_params.network_wrappers['main'].batch_size = 64
|
||||
agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5
|
||||
agent_params.network_wrappers['main'].adam_optimizer_beta2 = 0.999
|
||||
|
||||
agent_params.algorithm.clip_likelihood_ratio_using_epsilon = 0.2
|
||||
agent_params.algorithm.clipping_decay_schedule = LinearSchedule(1.0, 0, 1000000)
|
||||
agent_params.algorithm.beta_entropy = 0
|
||||
agent_params.algorithm.gae_lambda = 0.95
|
||||
agent_params.algorithm.discount = 0.99
|
||||
agent_params.algorithm.optimization_epochs = 10
|
||||
agent_params.algorithm.estimate_state_value_using_gae = True
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(2048)
|
||||
|
||||
# agent_params.input_filter = MujocoInputFilter()
|
||||
agent_params.exploration = EGreedyParameters()
|
||||
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
||||
# agent_params.pre_network_filter = MujocoInputFilter()
|
||||
agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation',
|
||||
ObservationNormalizationFilter(name='normalize_observation'))
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
###############
|
||||
env_params = Mujoco()
|
||||
env_params.level = 'CartPole-v0'
|
||||
|
||||
vis_params = VisualizationParameters()
|
||||
vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
|
||||
vis_params.dump_mp4 = False
|
||||
|
||||
########
|
||||
# Test #
|
||||
########
|
||||
preset_validation_params = PresetValidationParameters()
|
||||
preset_validation_params.test = True
|
||||
preset_validation_params.min_reward_threshold = 150
|
||||
preset_validation_params.max_episodes_to_achieve_reward = 250
|
||||
|
||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||
schedule_params=schedule_params, vis_params=vis_params,
|
||||
preset_validation_params=preset_validation_params)
|
||||
Reference in New Issue
Block a user