1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 19:50:17 +01:00

Add documentation on distributed Coach. (#158)

* Added documentation on distributed Coach.
This commit is contained in:
Balaji Subramaniam
2018-11-27 02:26:15 -08:00
committed by Gal Novik
parent e3ecf445e2
commit d06197f663
151 changed files with 5302 additions and 643 deletions

View File

@@ -85,6 +85,7 @@
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dist_usage.html">Usage - Distributed Coach</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
@@ -93,6 +94,7 @@
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul>
@@ -103,10 +105,13 @@
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../components/agents/index.html">Agents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/data_stores/index.html">Data Stores</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/environments/index.html">Environments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/memory_backends/index.html">Memory Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/orchestrators/index.html">Orchestrators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../components/additional_parameters.html">Additional Parameters</a></li>
@@ -295,7 +300,8 @@
<span class="bp">self</span><span class="o">.</span><span class="n">estimate_state_value_using_gae</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_kl_regularization</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">beta_entropy</span> <span class="o">=</span> <span class="mf">0.01</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_consecutive_playing_steps</span> <span class="o">=</span> <span class="n">EnvironmentSteps</span><span class="p">(</span><span class="mi">5000</span><span class="p">)</span></div>
<span class="bp">self</span><span class="o">.</span><span class="n">num_consecutive_playing_steps</span> <span class="o">=</span> <span class="n">EnvironmentSteps</span><span class="p">(</span><span class="mi">5000</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">act_for_full_episodes</span> <span class="o">=</span> <span class="kc">True</span></div>
<span class="k">class</span> <span class="nc">PPOAgentParameters</span><span class="p">(</span><span class="n">AgentParameters</span><span class="p">):</span>
@@ -529,12 +535,9 @@
<span class="c1"># clean memory</span>
<span class="bp">self</span><span class="o">.</span><span class="n">call_memory</span><span class="p">(</span><span class="s1">&#39;clean&#39;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_should_train_helper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">wait_for_full_episode</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_should_train_helper</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">loss</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_should_train</span><span class="p">(</span><span class="n">wait_for_full_episode</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_should_train</span><span class="p">():</span>
<span class="k">for</span> <span class="n">network</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
<span class="n">network</span><span class="o">.</span><span class="n">set_is_training</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
@@ -566,6 +569,7 @@
<span class="k">def</span> <span class="nf">get_prediction</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">states</span><span class="p">):</span>
<span class="n">tf_input_state</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prepare_batch_for_inference</span><span class="p">(</span><span class="n">states</span><span class="p">,</span> <span class="s2">&quot;actor&quot;</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">networks</span><span class="p">[</span><span class="s1">&#39;actor&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">online_network</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">tf_input_state</span><span class="p">)</span>
</pre></div>
</div>