mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
Parallel agents fixes (#95)
* Parallel agents related bug fixes: checkpoint restore, tensorboard integration. Adding narrow networks support. Reference code for unlimited number of checkpoints
This commit is contained in:
@@ -15,18 +15,20 @@
|
||||
#
|
||||
|
||||
import tensorflow as tf
|
||||
from configurations import EmbedderComplexity
|
||||
from configurations import EmbedderDepth, EmbedderWidth
|
||||
|
||||
|
||||
class InputEmbedder(object):
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
embedder_depth=EmbedderDepth.Shallow, embedder_width=EmbedderWidth.Wide,
|
||||
name="embedder"):
|
||||
self.name = name
|
||||
self.input_size = input_size
|
||||
self.activation_function = activation_function
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.embedder_complexity = embedder_complexity
|
||||
self.embedder_depth = embedder_depth
|
||||
self.embedder_width = embedder_width
|
||||
|
||||
def __call__(self, prev_input_placeholder=None):
|
||||
with tf.variable_scope(self.get_name()):
|
||||
@@ -47,15 +49,16 @@ class InputEmbedder(object):
|
||||
|
||||
class ImageEmbedder(InputEmbedder):
|
||||
def __init__(self, input_size, input_rescaler=255.0, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_complexity, name)
|
||||
embedder_depth=EmbedderDepth.Shallow, embedder_width=EmbedderWidth.Wide,
|
||||
name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_depth, embedder_width, name)
|
||||
self.input_rescaler = input_rescaler
|
||||
|
||||
def _build_module(self):
|
||||
# image observation
|
||||
rescaled_observation_stack = self.input / self.input_rescaler
|
||||
|
||||
if self.embedder_complexity == EmbedderComplexity.Shallow:
|
||||
if self.embedder_depth == EmbedderDepth.Shallow:
|
||||
# same embedder as used in the original DQN paper
|
||||
self.observation_conv1 = tf.layers.conv2d(rescaled_observation_stack,
|
||||
filters=32, kernel_size=(8, 8), strides=(4, 4),
|
||||
@@ -73,7 +76,7 @@ class ImageEmbedder(InputEmbedder):
|
||||
|
||||
self.output = tf.contrib.layers.flatten(self.observation_conv3)
|
||||
|
||||
elif self.embedder_complexity == EmbedderComplexity.Deep:
|
||||
elif self.embedder_depth == EmbedderDepth.Deep:
|
||||
# the embedder used in the CARLA papers
|
||||
self.observation_conv1 = tf.layers.conv2d(rescaled_observation_stack,
|
||||
filters=32, kernel_size=(5, 5), strides=(2, 2),
|
||||
@@ -115,24 +118,27 @@ class ImageEmbedder(InputEmbedder):
|
||||
|
||||
class VectorEmbedder(InputEmbedder):
|
||||
def __init__(self, input_size, activation_function=tf.nn.relu,
|
||||
embedder_complexity=EmbedderComplexity.Shallow, name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_complexity, name)
|
||||
embedder_depth=EmbedderDepth.Shallow, embedder_width=EmbedderWidth.Wide,
|
||||
name="embedder"):
|
||||
InputEmbedder.__init__(self, input_size, activation_function, embedder_depth, embedder_width, name)
|
||||
|
||||
def _build_module(self):
|
||||
# vector observation
|
||||
input_layer = tf.contrib.layers.flatten(self.input)
|
||||
|
||||
if self.embedder_complexity == EmbedderComplexity.Shallow:
|
||||
self.output = tf.layers.dense(input_layer, 256, activation=self.activation_function,
|
||||
width = 128 if self.embedder_width == EmbedderWidth.Wide else 32
|
||||
|
||||
if self.embedder_depth == EmbedderDepth.Shallow:
|
||||
self.output = tf.layers.dense(input_layer, 2*width, activation=self.activation_function,
|
||||
name='fc1')
|
||||
|
||||
elif self.embedder_complexity == EmbedderComplexity.Deep:
|
||||
elif self.embedder_depth == EmbedderDepth.Deep:
|
||||
# the embedder used in the CARLA papers
|
||||
self.observation_fc1 = tf.layers.dense(input_layer, 128, activation=self.activation_function,
|
||||
self.observation_fc1 = tf.layers.dense(input_layer, width, activation=self.activation_function,
|
||||
name='fc1')
|
||||
self.observation_fc2 = tf.layers.dense(self.observation_fc1, 128, activation=self.activation_function,
|
||||
self.observation_fc2 = tf.layers.dense(self.observation_fc1, width, activation=self.activation_function,
|
||||
name='fc2')
|
||||
self.output = tf.layers.dense(self.observation_fc2, 128, activation=self.activation_function,
|
||||
self.output = tf.layers.dense(self.observation_fc2, width, activation=self.activation_function,
|
||||
name='fc3')
|
||||
else:
|
||||
raise ValueError("The defined embedder complexity value is invalid")
|
||||
|
||||
@@ -36,6 +36,7 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
self.output_heads = []
|
||||
self.activation_function = self.get_activation_function(
|
||||
tuning_parameters.agent.hidden_layers_activation_function)
|
||||
self.embedder_width = tuning_parameters.agent.embedder_width
|
||||
|
||||
TensorFlowArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
|
||||
|
||||
@@ -57,22 +58,26 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
def get_observation_embedding(with_timestep=False):
|
||||
if self.input_height > 1:
|
||||
return ImageEmbedder((self.input_height, self.input_width, self.input_depth), name="observation",
|
||||
input_rescaler=self.tp.agent.input_rescaler)
|
||||
input_rescaler=self.tp.agent.input_rescaler, embedder_width=self.embedder_width)
|
||||
else:
|
||||
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation")
|
||||
return VectorEmbedder((self.input_width + int(with_timestep), self.input_depth), name="observation",
|
||||
embedder_width=self.embedder_width)
|
||||
|
||||
input_mapping = {
|
||||
InputTypes.Observation: get_observation_embedding(),
|
||||
InputTypes.Measurements: VectorEmbedder(self.measurements_size, name="measurements"),
|
||||
InputTypes.GoalVector: VectorEmbedder(self.measurements_size, name="goal_vector"),
|
||||
InputTypes.Action: VectorEmbedder((self.num_actions,), name="action"),
|
||||
InputTypes.Measurements: VectorEmbedder(self.measurements_size, name="measurements",
|
||||
embedder_width=self.embedder_width),
|
||||
InputTypes.GoalVector: VectorEmbedder(self.measurements_size, name="goal_vector",
|
||||
embedder_width=self.embedder_width),
|
||||
InputTypes.Action: VectorEmbedder((self.num_actions,), name="action",
|
||||
embedder_width=self.embedder_width),
|
||||
InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
|
||||
}
|
||||
return input_mapping[embedder_type]
|
||||
|
||||
def get_middleware_embedder(self, middleware_type):
|
||||
return {MiddlewareTypes.LSTM: LSTM_Embedder,
|
||||
MiddlewareTypes.FC: FC_Embedder}.get(middleware_type)(self.activation_function)
|
||||
MiddlewareTypes.FC: FC_Embedder}.get(middleware_type)(self.activation_function, self.embedder_width)
|
||||
|
||||
def get_output_head(self, head_type, head_idx, loss_weight=1.):
|
||||
output_mapping = {
|
||||
@@ -174,7 +179,8 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
||||
self.losses = tf.losses.get_losses(self.name)
|
||||
self.losses += tf.losses.get_regularization_losses(self.name)
|
||||
self.total_loss = tf.losses.compute_weighted_loss(self.losses, scope=self.name)
|
||||
tf.summary.scalar('total_loss', self.total_loss)
|
||||
if self.tp.visualization.tensorboard:
|
||||
tf.summary.scalar('total_loss', self.total_loss)
|
||||
|
||||
|
||||
# Learning rate
|
||||
|
||||
@@ -395,7 +395,6 @@ class PPOHead(Head):
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
eps = 1e-15
|
||||
|
||||
if self.discrete_controls:
|
||||
self.actions = tf.placeholder(tf.int32, [None], name="actions")
|
||||
else:
|
||||
@@ -410,7 +409,7 @@ class PPOHead(Head):
|
||||
self.policy_mean = tf.nn.softmax(policy_values, name="policy")
|
||||
|
||||
# define the distributions for the policy and the old policy
|
||||
self.policy_distribution = tf.contrib.distributions.Categorical(probs=self.policy_mean)
|
||||
self.policy_distribution = tf.contrib.distributions.Categorical(probs=(self.policy_mean + eps))
|
||||
self.old_policy_distribution = tf.contrib.distributions.Categorical(probs=self.old_policy_mean)
|
||||
|
||||
self.output = self.policy_mean
|
||||
@@ -445,7 +444,7 @@ class PPOHead(Head):
|
||||
# calculate surrogate loss
|
||||
self.advantages = tf.placeholder(tf.float32, [None], name="advantages")
|
||||
self.target = self.advantages
|
||||
self.likelihood_ratio = self.action_probs_wrt_policy / self.action_probs_wrt_old_policy
|
||||
self.likelihood_ratio = self.action_probs_wrt_policy / (self.action_probs_wrt_old_policy + eps)
|
||||
if self.clip_likelihood_ratio_using_epsilon is not None:
|
||||
max_value = 1 + self.clip_likelihood_ratio_using_epsilon
|
||||
min_value = 1 - self.clip_likelihood_ratio_using_epsilon
|
||||
|
||||
@@ -16,13 +16,15 @@
|
||||
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from configurations import EmbedderWidth
|
||||
|
||||
|
||||
class MiddlewareEmbedder(object):
|
||||
def __init__(self, activation_function=tf.nn.relu, name="middleware_embedder"):
|
||||
def __init__(self, activation_function=tf.nn.relu, embedder_width=EmbedderWidth.Wide, name="middleware_embedder"):
|
||||
self.name = name
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.embedder_width = embedder_width
|
||||
self.activation_function = activation_function
|
||||
|
||||
def __call__(self, input_layer):
|
||||
@@ -70,4 +72,6 @@ class LSTM_Embedder(MiddlewareEmbedder):
|
||||
|
||||
class FC_Embedder(MiddlewareEmbedder):
|
||||
def _build_module(self):
|
||||
self.output = tf.layers.dense(self.input, 512, activation=self.activation_function, name='fc1')
|
||||
width = 512 if self.embedder_width == EmbedderWidth.Wide else 64
|
||||
self.output = tf.layers.dense(self.input, width, activation=self.activation_function, name='fc1')
|
||||
|
||||
|
||||
Reference in New Issue
Block a user