mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
initial CIL implementation (WIP)
This commit is contained in:
84
rl_coach/agents/cil_agent.py
Normal file
84
rl_coach/agents/cil_agent.py
Normal file
@@ -0,0 +1,84 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import Union
|
||||
|
||||
from rl_coach.agents.imitation_agent import ImitationAgent
|
||||
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters
|
||||
from rl_coach.architectures.tensorflow_components.heads.cil_head import RegressionHeadParameters
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.base_parameters import AgentParameters, MiddlewareScheme, NetworkParameters, AlgorithmParameters
|
||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||
from rl_coach.memories.non_episodic.balanced_experience_replay import BalancedExperienceReplayParameters
|
||||
|
||||
|
||||
class CILAlgorithmParameters(AlgorithmParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.collect_new_data = False
|
||||
|
||||
|
||||
class CILNetworkParameters(NetworkParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
||||
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium)
|
||||
self.heads_parameters = [RegressionHeadParameters()]
|
||||
self.loss_weights = [1.0]
|
||||
self.optimizer_type = 'Adam'
|
||||
self.batch_size = 32
|
||||
self.replace_mse_with_huber_loss = False
|
||||
self.create_target_network = False
|
||||
|
||||
|
||||
class CILAgentParameters(AgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__(algorithm=CILAlgorithmParameters(),
|
||||
exploration=EGreedyParameters(),
|
||||
memory=BalancedExperienceReplayParameters(),
|
||||
networks={"main": CILNetworkParameters()})
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.agents.cil_agent:CILAgent'
|
||||
|
||||
|
||||
# Conditional Imitation Learning Agent: https://arxiv.org/abs/1710.02410
|
||||
class CILAgent(ImitationAgent):
|
||||
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
||||
super().__init__(agent_parameters, parent)
|
||||
self.current_high_level_control = 0
|
||||
|
||||
def choose_action(self, curr_state):
|
||||
self.current_high_level_control = curr_state['high_level_command']
|
||||
return super().choose_action(curr_state)
|
||||
|
||||
def extract_action_values(self, prediction):
|
||||
return prediction[self.current_high_level_control].squeeze()
|
||||
|
||||
def learn_from_batch(self, batch):
|
||||
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
||||
|
||||
target_values = self.networks['main'].online_network.predict({**batch.states(network_keys)})
|
||||
|
||||
branch_to_update = batch.states(['high_level_command'])['high_level_command']
|
||||
for idx, branch in enumerate(branch_to_update):
|
||||
target_values[branch][idx] = batch.actions()[idx]
|
||||
|
||||
result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys)}, target_values)
|
||||
total_loss, losses, unclipped_grads = result[:3]
|
||||
|
||||
return total_loss, losses, unclipped_grads
|
||||
Reference in New Issue
Block a user