mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
restoring from a checkpoint file (#247)
This commit is contained in:
@@ -43,8 +43,9 @@ class DNDQHead(QHead):
|
||||
self.shared_memory_scratchpad = self.ap.task_parameters.shared_memory_scratchpad
|
||||
|
||||
def _build_module(self, input_layer):
|
||||
if hasattr(self.ap.task_parameters, 'checkpoint_restore_dir') and self.ap.task_parameters.checkpoint_restore_dir:
|
||||
self.DND = differentiable_neural_dictionary.load_dnd(self.ap.task_parameters.checkpoint_restore_dir)
|
||||
if hasattr(self.ap.task_parameters, 'checkpoint_restore_path') and\
|
||||
self.ap.task_parameters.checkpoint_restore_path:
|
||||
self.DND = differentiable_neural_dictionary.load_dnd(self.ap.task_parameters.checkpoint_restore_path)
|
||||
else:
|
||||
self.DND = differentiable_neural_dictionary.QDND(
|
||||
self.DND_size, input_layer.get_shape()[-1], self.num_actions, self.new_value_shift_coefficient,
|
||||
|
||||
@@ -25,6 +25,7 @@ from typing import Dict, List, Union
|
||||
from rl_coach.core_types import TrainingSteps, EnvironmentSteps, GradientClippingMethod, RunPhase, \
|
||||
SelectedPhaseOnlyDumpFilter, MaxDumpFilter
|
||||
from rl_coach.filters.filter import NoInputFilter
|
||||
from rl_coach.logger import screen
|
||||
|
||||
|
||||
class Frameworks(Enum):
|
||||
@@ -552,8 +553,8 @@ class AgentParameters(Parameters):
|
||||
class TaskParameters(Parameters):
|
||||
def __init__(self, framework_type: Frameworks=Frameworks.tensorflow, evaluate_only: int=None, use_cpu: bool=False,
|
||||
experiment_path='/tmp', seed=None, checkpoint_save_secs=None, checkpoint_restore_dir=None,
|
||||
checkpoint_save_dir=None, export_onnx_graph: bool=False, apply_stop_condition: bool=False,
|
||||
num_gpu: int=1):
|
||||
checkpoint_restore_path=None, checkpoint_save_dir=None, export_onnx_graph: bool=False,
|
||||
apply_stop_condition: bool=False, num_gpu: int=1):
|
||||
"""
|
||||
:param framework_type: deep learning framework type. currently only tensorflow is supported
|
||||
:param evaluate_only: if not None, the task will be used only for evaluating the model for the given number of steps.
|
||||
@@ -562,7 +563,10 @@ class TaskParameters(Parameters):
|
||||
:param experiment_path: the path to the directory which will store all the experiment outputs
|
||||
:param seed: a seed to use for the random numbers generator
|
||||
:param checkpoint_save_secs: the number of seconds between each checkpoint saving
|
||||
:param checkpoint_restore_dir: the directory to restore the checkpoints from
|
||||
:param checkpoint_restore_dir:
|
||||
[DEPECRATED - will be removed in one of the next releases - switch to checkpoint_restore_path]
|
||||
the dir to restore the checkpoints from
|
||||
:param checkpoint_restore_path: the path to restore the checkpoints from
|
||||
:param checkpoint_save_dir: the directory to store the checkpoints in
|
||||
:param export_onnx_graph: If set to True, this will export an onnx graph each time a checkpoint is saved
|
||||
:param apply_stop_condition: If set to True, this will apply the stop condition defined by reaching a target success rate
|
||||
@@ -574,7 +578,13 @@ class TaskParameters(Parameters):
|
||||
self.use_cpu = use_cpu
|
||||
self.experiment_path = experiment_path
|
||||
self.checkpoint_save_secs = checkpoint_save_secs
|
||||
self.checkpoint_restore_dir = checkpoint_restore_dir
|
||||
if checkpoint_restore_dir:
|
||||
screen.warning('TaskParameters.checkpoint_restore_dir is DEPECRATED and will be removed in one of the next '
|
||||
'releases. Please switch to using TaskParameters.checkpoint_restore_path, with your '
|
||||
'directory path. ')
|
||||
self.checkpoint_restore_path = checkpoint_restore_dir
|
||||
else:
|
||||
self.checkpoint_restore_path = checkpoint_restore_path
|
||||
self.checkpoint_save_dir = checkpoint_save_dir
|
||||
self.seed = seed
|
||||
self.export_onnx_graph = export_onnx_graph
|
||||
@@ -586,7 +596,7 @@ class DistributedTaskParameters(TaskParameters):
|
||||
def __init__(self, framework_type: Frameworks, parameters_server_hosts: str, worker_hosts: str, job_type: str,
|
||||
task_index: int, evaluate_only: int=None, num_tasks: int=None,
|
||||
num_training_tasks: int=None, use_cpu: bool=False, experiment_path=None, dnd=None,
|
||||
shared_memory_scratchpad=None, seed=None, checkpoint_save_secs=None, checkpoint_restore_dir=None,
|
||||
shared_memory_scratchpad=None, seed=None, checkpoint_save_secs=None, checkpoint_restore_path=None,
|
||||
checkpoint_save_dir=None, export_onnx_graph: bool=False, apply_stop_condition: bool=False):
|
||||
"""
|
||||
:param framework_type: deep learning framework type. currently only tensorflow is supported
|
||||
@@ -604,7 +614,7 @@ class DistributedTaskParameters(TaskParameters):
|
||||
:param dnd: an external DND to use for NEC. This is a workaround needed for a shared DND not using the scratchpad.
|
||||
:param seed: a seed to use for the random numbers generator
|
||||
:param checkpoint_save_secs: the number of seconds between each checkpoint saving
|
||||
:param checkpoint_restore_dir: the directory to restore the checkpoints from
|
||||
:param checkpoint_restore_path: the path to restore the checkpoints from
|
||||
:param checkpoint_save_dir: the directory to store the checkpoints in
|
||||
:param export_onnx_graph: If set to True, this will export an onnx graph each time a checkpoint is saved
|
||||
:param apply_stop_condition: If set to True, this will apply the stop condition defined by reaching a target success rate
|
||||
@@ -612,7 +622,7 @@ class DistributedTaskParameters(TaskParameters):
|
||||
"""
|
||||
super().__init__(framework_type=framework_type, evaluate_only=evaluate_only, use_cpu=use_cpu,
|
||||
experiment_path=experiment_path, seed=seed, checkpoint_save_secs=checkpoint_save_secs,
|
||||
checkpoint_restore_dir=checkpoint_restore_dir, checkpoint_save_dir=checkpoint_save_dir,
|
||||
checkpoint_restore_path=checkpoint_restore_path, checkpoint_save_dir=checkpoint_save_dir,
|
||||
export_onnx_graph=export_onnx_graph, apply_stop_condition=apply_stop_condition)
|
||||
self.parameters_server_hosts = parameters_server_hosts
|
||||
self.worker_hosts = worker_hosts
|
||||
|
||||
@@ -33,6 +33,8 @@ from rl_coach.base_parameters import Frameworks, VisualizationParameters, TaskPa
|
||||
from multiprocessing import Process
|
||||
from multiprocessing.managers import BaseManager
|
||||
import subprocess
|
||||
from glob import glob
|
||||
|
||||
from rl_coach.graph_managers.graph_manager import HumanPlayScheduleParameters, GraphManager
|
||||
from rl_coach.utils import list_all_presets, short_dynamic_import, get_open_port, SharedMemoryScratchPad, get_base_dir
|
||||
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
|
||||
@@ -44,7 +46,7 @@ from rl_coach.data_stores.s3_data_store import S3DataStoreParameters
|
||||
from rl_coach.data_stores.nfs_data_store import NFSDataStoreParameters
|
||||
from rl_coach.data_stores.data_store_impl import get_data_store, construct_data_store_params
|
||||
from rl_coach.training_worker import training_worker
|
||||
from rl_coach.rollout_worker import rollout_worker, wait_for_checkpoint
|
||||
from rl_coach.rollout_worker import rollout_worker
|
||||
|
||||
|
||||
if len(set(failed_imports)) > 0:
|
||||
@@ -110,7 +112,7 @@ def handle_distributed_coach_tasks(graph_manager, args, task_parameters):
|
||||
)
|
||||
|
||||
if args.distributed_coach_run_type == RunType.ROLLOUT_WORKER:
|
||||
task_parameters.checkpoint_restore_dir = ckpt_inside_container
|
||||
task_parameters.checkpoint_restore_path = ckpt_inside_container
|
||||
|
||||
data_store = None
|
||||
if args.data_store_params:
|
||||
@@ -394,6 +396,10 @@ class CoachLauncher(object):
|
||||
if args.checkpoint_restore_dir is not None and not os.path.exists(args.checkpoint_restore_dir):
|
||||
screen.error("The requested checkpoint folder to load from does not exist.")
|
||||
|
||||
# validate the checkpoints args
|
||||
if args.checkpoint_restore_file is not None and not glob(args.checkpoint_restore_file + '*'):
|
||||
screen.error("The requested checkpoint file to load from does not exist.")
|
||||
|
||||
# no preset was given. check if the user requested to play some environment on its own
|
||||
if args.preset is None and args.play and not args.environment_type:
|
||||
screen.error('When no preset is given for Coach to run, and the user requests human control over '
|
||||
@@ -493,6 +499,9 @@ class CoachLauncher(object):
|
||||
parser.add_argument('-crd', '--checkpoint_restore_dir',
|
||||
help='(string) Path to a folder containing a checkpoint to restore the model from.',
|
||||
type=str)
|
||||
parser.add_argument('-crf', '--checkpoint_restore_file',
|
||||
help='(string) Path to a checkpoint file to restore the model from.',
|
||||
type=str)
|
||||
parser.add_argument('-dg', '--dump_gifs',
|
||||
help="(flag) Enable the gif saving functionality.",
|
||||
action='store_true')
|
||||
@@ -607,6 +616,12 @@ class CoachLauncher(object):
|
||||
atexit.register(logger.summarize_experiment)
|
||||
screen.change_terminal_title(args.experiment_name)
|
||||
|
||||
if args.checkpoint_restore_dir is not None and args.checkpoint_restore_file is not None:
|
||||
raise ValueError("Only one of the checkpoint_restore_dir and checkpoint_restore_file arguments can be used"
|
||||
" simulatenously.")
|
||||
checkpoint_restore_path = args.checkpoint_restore_dir if args.checkpoint_restore_dir \
|
||||
else args.checkpoint_restore_file
|
||||
|
||||
task_parameters = TaskParameters(
|
||||
framework_type=args.framework,
|
||||
evaluate_only=args.evaluate,
|
||||
@@ -614,7 +629,7 @@ class CoachLauncher(object):
|
||||
seed=args.seed,
|
||||
use_cpu=args.use_cpu,
|
||||
checkpoint_save_secs=args.checkpoint_save_secs,
|
||||
checkpoint_restore_dir=args.checkpoint_restore_dir,
|
||||
checkpoint_restore_path=checkpoint_restore_path,
|
||||
checkpoint_save_dir=args.checkpoint_save_dir,
|
||||
export_onnx_graph=args.export_onnx_graph,
|
||||
apply_stop_condition=args.apply_stop_condition
|
||||
@@ -637,11 +652,13 @@ class CoachLauncher(object):
|
||||
else:
|
||||
self.start_multi_threaded(graph_manager, args)
|
||||
|
||||
def start_single_threaded(self, task_parameters, graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
@staticmethod
|
||||
def start_single_threaded(task_parameters, graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
# Start the training or evaluation
|
||||
start_graph(graph_manager=graph_manager, task_parameters=task_parameters)
|
||||
|
||||
def start_multi_threaded(self, graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
@staticmethod
|
||||
def start_multi_threaded(graph_manager: 'GraphManager', args: argparse.Namespace):
|
||||
total_tasks = args.num_workers
|
||||
if args.evaluation_worker:
|
||||
total_tasks += 1
|
||||
@@ -657,6 +674,10 @@ class CoachLauncher(object):
|
||||
comm_manager.start()
|
||||
shared_memory_scratchpad = comm_manager.SharedMemoryScratchPad()
|
||||
|
||||
if args.checkpoint_restore_file:
|
||||
raise ValueError("Multi-Process runs only support restoring checkpoints from a directory, "
|
||||
"and not from a file. ")
|
||||
|
||||
def start_distributed_task(job_type, task_index, evaluation_worker=False,
|
||||
shared_memory_scratchpad=shared_memory_scratchpad):
|
||||
task_parameters = DistributedTaskParameters(
|
||||
@@ -673,7 +694,7 @@ class CoachLauncher(object):
|
||||
shared_memory_scratchpad=shared_memory_scratchpad,
|
||||
seed=args.seed+task_index if args.seed is not None else None, # each worker gets a different seed
|
||||
checkpoint_save_secs=args.checkpoint_save_secs,
|
||||
checkpoint_restore_dir=args.checkpoint_restore_dir,
|
||||
checkpoint_restore_path=args.checkpoint_restore_dir, # MonitoredTrainingSession only supports a dir
|
||||
checkpoint_save_dir=args.checkpoint_save_dir,
|
||||
export_onnx_graph=args.export_onnx_graph,
|
||||
apply_stop_condition=args.apply_stop_condition
|
||||
|
||||
@@ -25,7 +25,7 @@ import contextlib
|
||||
from rl_coach.base_parameters import iterable_to_items, TaskParameters, DistributedTaskParameters, Frameworks, \
|
||||
VisualizationParameters, \
|
||||
Parameters, PresetValidationParameters, RunType
|
||||
from rl_coach.checkpoint import CheckpointStateUpdater, get_checkpoint_state, SingleCheckpoint
|
||||
from rl_coach.checkpoint import CheckpointStateUpdater, get_checkpoint_state, SingleCheckpoint, CheckpointState
|
||||
from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, TrainingSteps, EnvironmentEpisodes, \
|
||||
EnvironmentSteps, \
|
||||
StepMethod, Transition
|
||||
@@ -218,11 +218,13 @@ class GraphManager(object):
|
||||
if isinstance(task_parameters, DistributedTaskParameters):
|
||||
# the distributed tensorflow setting
|
||||
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_monitored_session
|
||||
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
|
||||
if hasattr(self.task_parameters, 'checkpoint_restore_path') and self.task_parameters.checkpoint_restore_path:
|
||||
checkpoint_dir = os.path.join(task_parameters.experiment_path, 'checkpoint')
|
||||
if os.path.exists(checkpoint_dir):
|
||||
remove_tree(checkpoint_dir)
|
||||
copy_tree(task_parameters.checkpoint_restore_dir, checkpoint_dir)
|
||||
# in the locally distributed case, checkpoints are always restored from a directory (and not from a
|
||||
# file)
|
||||
copy_tree(task_parameters.checkpoint_restore_path, checkpoint_dir)
|
||||
else:
|
||||
checkpoint_dir = task_parameters.checkpoint_save_dir
|
||||
|
||||
@@ -547,30 +549,44 @@ class GraphManager(object):
|
||||
self.verify_graph_was_created()
|
||||
|
||||
# TODO: find better way to load checkpoints that were saved with a global network into the online network
|
||||
if self.task_parameters.checkpoint_restore_dir:
|
||||
if self.task_parameters.framework_type == Frameworks.tensorflow and\
|
||||
'checkpoint' in os.listdir(self.task_parameters.checkpoint_restore_dir):
|
||||
# TODO-fixme checkpointing
|
||||
# MonitoredTrainingSession manages save/restore checkpoints autonomously. Doing so,
|
||||
# it creates it own names for the saved checkpoints, which do not match the "{}_Step-{}.ckpt" filename
|
||||
# pattern. The names used are maintained in a CheckpointState protobuf file named 'checkpoint'. Using
|
||||
# Coach's '.coach_checkpoint' protobuf file, results in an error when trying to restore the model, as
|
||||
# the checkpoint names defined do not match the actual checkpoint names.
|
||||
checkpoint = self._get_checkpoint_state_tf()
|
||||
if self.task_parameters.checkpoint_restore_path:
|
||||
if os.path.isdir(self.task_parameters.checkpoint_restore_path):
|
||||
# a checkpoint dir
|
||||
if self.task_parameters.framework_type == Frameworks.tensorflow and\
|
||||
'checkpoint' in os.listdir(self.task_parameters.checkpoint_restore_path):
|
||||
# TODO-fixme checkpointing
|
||||
# MonitoredTrainingSession manages save/restore checkpoints autonomously. Doing so,
|
||||
# it creates it own names for the saved checkpoints, which do not match the "{}_Step-{}.ckpt"
|
||||
# filename pattern. The names used are maintained in a CheckpointState protobuf file named
|
||||
# 'checkpoint'. Using Coach's '.coach_checkpoint' protobuf file, results in an error when trying to
|
||||
# restore the model, as the checkpoint names defined do not match the actual checkpoint names.
|
||||
checkpoint = self._get_checkpoint_state_tf(self.task_parameters.checkpoint_restore_path)
|
||||
else:
|
||||
checkpoint = get_checkpoint_state(self.task_parameters.checkpoint_restore_path)
|
||||
|
||||
if checkpoint is None:
|
||||
raise ValueError("No checkpoint to restore in: {}".format(
|
||||
self.task_parameters.checkpoint_restore_path))
|
||||
model_checkpoint_path = checkpoint.model_checkpoint_path
|
||||
checkpoint_restore_dir = self.task_parameters.checkpoint_restore_path
|
||||
else:
|
||||
checkpoint = get_checkpoint_state(self.task_parameters.checkpoint_restore_dir)
|
||||
# a checkpoint file
|
||||
if self.task_parameters.framework_type == Frameworks.tensorflow:
|
||||
model_checkpoint_path = self.task_parameters.checkpoint_restore_path
|
||||
checkpoint_restore_dir = os.path.dirname(model_checkpoint_path)
|
||||
else:
|
||||
raise ValueError("Currently restoring a checkpoint using the --checkpoint_restore_file argument is"
|
||||
" only supported when with tensorflow.")
|
||||
|
||||
if checkpoint is None:
|
||||
screen.warning("No checkpoint to restore in: {}".format(self.task_parameters.checkpoint_restore_dir))
|
||||
else:
|
||||
screen.log_title("Loading checkpoint: {}".format(checkpoint.model_checkpoint_path))
|
||||
self.checkpoint_saver.restore(self.sess, checkpoint.model_checkpoint_path)
|
||||
screen.log_title("Loading checkpoint: {}".format(model_checkpoint_path))
|
||||
|
||||
[manager.restore_checkpoint(self.task_parameters.checkpoint_restore_dir) for manager in self.level_managers]
|
||||
self.checkpoint_saver.restore(self.sess, model_checkpoint_path)
|
||||
|
||||
def _get_checkpoint_state_tf(self):
|
||||
[manager.restore_checkpoint(checkpoint_restore_dir) for manager in self.level_managers]
|
||||
|
||||
def _get_checkpoint_state_tf(self, checkpoint_restore_dir):
|
||||
import tensorflow as tf
|
||||
return tf.train.get_checkpoint_state(self.task_parameters.checkpoint_restore_dir)
|
||||
return tf.train.get_checkpoint_state(checkpoint_restore_dir)
|
||||
|
||||
def occasionally_save_checkpoint(self):
|
||||
# only the chief process saves checkpoints
|
||||
|
||||
@@ -67,7 +67,7 @@ def rollout_worker(graph_manager, data_store, num_workers, task_parameters):
|
||||
"""
|
||||
wait for first checkpoint then perform rollouts using the model
|
||||
"""
|
||||
checkpoint_dir = task_parameters.checkpoint_restore_dir
|
||||
checkpoint_dir = task_parameters.checkpoint_restore_path
|
||||
wait_for_checkpoint(checkpoint_dir, data_store)
|
||||
|
||||
graph_manager.create_graph(task_parameters)
|
||||
|
||||
@@ -56,7 +56,7 @@ def test_basic_rl_graph_manager_with_cartpole_dqn_and_repeated_checkpoint_restor
|
||||
# graph_manager.evaluate(EnvironmentSteps(1000))
|
||||
# graph_manager.save_checkpoint()
|
||||
#
|
||||
# graph_manager.task_parameters.checkpoint_restore_dir = "./experiments/test/checkpoint"
|
||||
# graph_manager.task_parameters.checkpoint_restore_path = "./experiments/test/checkpoint"
|
||||
# while True:
|
||||
# graph_manager.restore_checkpoint()
|
||||
# graph_manager.evaluate(EnvironmentSteps(1000))
|
||||
|
||||
Reference in New Issue
Block a user