mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 11:40:18 +01:00
rainbow dqn hyper-parameter updates
This commit is contained in:
@@ -22,7 +22,8 @@ from rl_coach.agents.categorical_dqn_agent import CategoricalDQNAlgorithmParamet
|
||||
CategoricalDQNAgent, CategoricalDQNAgentParameters
|
||||
from rl_coach.agents.dqn_agent import DQNNetworkParameters
|
||||
from rl_coach.architectures.tensorflow_components.heads.rainbow_q_head import RainbowQHeadParameters
|
||||
|
||||
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
||||
from rl_coach.base_parameters import MiddlewareScheme
|
||||
from rl_coach.exploration_policies.parameter_noise import ParameterNoiseParameters
|
||||
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters, \
|
||||
PrioritizedExperienceReplay
|
||||
@@ -32,6 +33,7 @@ class RainbowDQNNetworkParameters(DQNNetworkParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.heads_parameters = [RainbowQHeadParameters()]
|
||||
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty)
|
||||
|
||||
|
||||
class RainbowDQNAlgorithmParameters(CategoricalDQNAlgorithmParameters):
|
||||
@@ -44,6 +46,11 @@ class RainbowDQNExplorationParameters(ParameterNoiseParameters):
|
||||
super().__init__(agent_params)
|
||||
|
||||
|
||||
class RainbowDQNMemoryParameters(PrioritizedExperienceReplayParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
|
||||
class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@@ -58,8 +65,8 @@ class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
|
||||
|
||||
|
||||
# Rainbow Deep Q Network - https://arxiv.org/abs/1710.02298
|
||||
# Agent implementation is WIP. Currently has:
|
||||
# 1. DQN
|
||||
# Agent implementation is WIP. Currently is composed of:
|
||||
# 1. NoisyNets
|
||||
# 2. C51
|
||||
# 3. Prioritized ER
|
||||
# 4. DDQN
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
from rl_coach.agents.categorical_dqn_agent import CategoricalDQNAgentParameters
|
||||
from rl_coach.agents.rainbow_dqn_agent import RainbowDQNAgentParameters
|
||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||
from rl_coach.core_types import EnvironmentSteps, RunPhase
|
||||
@@ -13,17 +12,20 @@ from rl_coach.schedules import LinearSchedule
|
||||
####################
|
||||
schedule_params = ScheduleParameters()
|
||||
schedule_params.improve_steps = EnvironmentSteps(50000000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(250000)
|
||||
schedule_params.evaluation_steps = EnvironmentSteps(135000)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(50000)
|
||||
schedule_params.steps_between_evaluation_periods = EnvironmentSteps(1000000)
|
||||
schedule_params.evaluation_steps = EnvironmentSteps(125000)
|
||||
schedule_params.heatup_steps = EnvironmentSteps(20000)
|
||||
|
||||
#########
|
||||
# Agent #
|
||||
#########
|
||||
agent_params = RainbowDQNAgentParameters()
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.00025
|
||||
agent_params.memory.beta = LinearSchedule(0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames
|
||||
|
||||
agent_params.network_wrappers['main'].learning_rate = 0.0000625
|
||||
agent_params.network_wrappers['main'].optimizer_epsilon = 1.5e-4
|
||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(32000 // 4) # 32k frames
|
||||
agent_params.memory.beta = LinearSchedule(0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames
|
||||
agent_params.memory.alpha = 0.5
|
||||
|
||||
###############
|
||||
# Environment #
|
||||
|
||||
Reference in New Issue
Block a user