1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

adding dueling support for rainbow dqn (now only missing n-step)

This commit is contained in:
Gal Leibovich
2018-08-30 18:15:59 +03:00
parent d2623c0eee
commit ea294de7fd
3 changed files with 40 additions and 22 deletions

View File

@@ -18,25 +18,20 @@ from typing import Union
import numpy as np
from rl_coach.agents.categorical_dqn_agent import CategoricalDQNNetworkParameters, CategoricalDQNAlgorithmParameters, \
from rl_coach.agents.categorical_dqn_agent import CategoricalDQNAlgorithmParameters, \
CategoricalDQNAgent, CategoricalDQNAgentParameters
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAlgorithmParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.tensorflow_components.heads.categorical_q_head import CategoricalQHeadParameters
from rl_coach.base_parameters import AgentParameters
from rl_coach.agents.dqn_agent import DQNNetworkParameters
from rl_coach.architectures.tensorflow_components.heads.rainbow_q_head import RainbowQHeadParameters
from rl_coach.exploration_policies.parameter_noise import ParameterNoiseParameters
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters, \
PrioritizedExperienceReplay
from rl_coach.schedules import LinearSchedule
from rl_coach.core_types import StateType
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
class RainbowDQNNetworkParameters(CategoricalDQNNetworkParameters):
class RainbowDQNNetworkParameters(DQNNetworkParameters):
def __init__(self):
super().__init__()
self.heads_parameters = [RainbowQHeadParameters()]
class RainbowDQNAlgorithmParameters(CategoricalDQNAlgorithmParameters):
@@ -68,10 +63,11 @@ class RainbowDQNAgentParameters(CategoricalDQNAgentParameters):
# 2. C51
# 3. Prioritized ER
# 4. DDQN
# 5. Dueling DQN
#
# still missing:
# 1. N-Step
# 2. Dueling DQN
class RainbowDQNAgent(CategoricalDQNAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)

View File

@@ -42,9 +42,6 @@ class CategoricalQHead(Head):
self.return_type = QActionStateValue
def _build_module(self, input_layer):
self.actions = tf.placeholder(tf.int32, [None], name="actions")
self.input = [self.actions]
values_distribution = self.dense_layer(self.num_actions * self.num_atoms)(input_layer, name='output')
values_distribution = tf.reshape(values_distribution, (tf.shape(values_distribution)[0], self.num_actions,
self.num_atoms))

View File

@@ -17,11 +17,10 @@
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Dense
from rl_coach.architectures.tensorflow_components.heads.head import HeadParameters, Head
from rl_coach.base_parameters import AgentParameters
from rl_coach.spaces import SpacesDefinition
from rl_coach.architectures.tensorflow_components.heads.head import Head, HeadParameters
from rl_coach.core_types import QActionStateValue
from rl_coach.spaces import SpacesDefinition
class RainbowQHeadParameters(HeadParameters):
@@ -30,15 +29,41 @@ class RainbowQHeadParameters(HeadParameters):
dense_layer=dense_layer)
class RainbowQHead():
class RainbowQHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'rainbow_dqn_head'
self.num_actions = len(self.spaces.action.actions)
self.num_atoms = agent_parameters.algorithm.atoms
self.return_type = QActionStateValue
self.name = 'rainbow_q_values_head'
def _build_module(self, input_layer):
pass
# state value tower - V
with tf.variable_scope("state_value"):
state_value = self.dense_layer(self.num_atoms)(input_layer, name='fc1')
state_value = tf.expand_dims(state_value, axis=1)
# action advantage tower - A
with tf.variable_scope("action_advantage"):
action_advantage = self.dense_layer(self.num_actions * self.num_atoms)(input_layer, name='fc1')
action_advantage = tf.reshape(action_advantage, (tf.shape(input_layer)[0], self.num_actions,
self.num_atoms))
action_mean = tf.reduce_mean(action_advantage, axis=1, keepdims=True)
action_advantage = action_advantage - action_mean
# merge to state-action value function Q
values_distribution = tf.add(state_value, action_advantage, name='output')
# softmax on atoms dimension
self.output = tf.nn.softmax(values_distribution)
# calculate cross entropy loss
self.distributions = tf.placeholder(tf.float32, shape=(None, self.num_actions, self.num_atoms),
name="distributions")
self.target = self.distributions
self.loss = tf.nn.softmax_cross_entropy_with_logits(labels=self.target, logits=values_distribution)
tf.losses.add_loss(self.loss)