1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 19:50:17 +01:00

Carla updates

This commit is contained in:
itaicaspi-intel
2018-09-13 11:30:38 +03:00
parent fa4895f840
commit fa79d8d365

View File

@@ -33,6 +33,7 @@ try:
from carla.tcp import TCPConnectionError
from carla.sensor import Camera
from carla.client import VehicleControl
from carla.planner.planner import Planner
except ImportError:
from rl_coach.logger import failed_imports
failed_imports.append("CARLA")
@@ -56,8 +57,8 @@ import numpy as np
# enum of the available levels and their path
class CarlaLevel(Enum):
TOWN1 = "/Game/Maps/Town01"
TOWN2 = "/Game/Maps/Town02"
TOWN1 = {"map_name": "Town01", "map_path": "/Game/Maps/Town01"}
TOWN2 = {"map_name": "Town02", "map_path": "/Game/Maps/Town02"}
key_map = {
'BRAKE': (274,), # down arrow
@@ -110,6 +111,8 @@ class CarlaEnvironmentParameters(EnvironmentParameters):
self.verbose = True
self.episode_max_time = 100000 # miliseconds for each episode
self.allow_braking = False
self.num_speedup_steps = 30
self.max_speed = 35.0 # km/h
self.default_input_filter = CarlaInputFilter
self.default_output_filter = CarlaOutputFilter
@@ -125,7 +128,8 @@ class CarlaEnvironment(Environment):
server_height: int, server_width: int, camera_height: int, camera_width: int,
verbose: bool, config: str, episode_max_time: int,
allow_braking: bool, quality: CarlaEnvironmentParameters.Quality,
cameras: List[CameraTypes], weather_id: List[int], experiment_path: str, **kwargs):
cameras: List[CameraTypes], weather_id: List[int], experiment_path: str,
num_speedup_steps: int, max_speed: float, **kwargs):
super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters)
# server configuration
@@ -133,7 +137,8 @@ class CarlaEnvironment(Environment):
self.server_width = server_width
self.port = get_open_port()
self.host = 'localhost'
self.map = self.env_id
self.map_name = CarlaLevel[level.upper()].value['map_name']
self.map_path = CarlaLevel[level.upper()].value['map_path']
self.experiment_path = experiment_path
# client configuration
@@ -189,8 +194,8 @@ class CarlaEnvironment(Environment):
scene = self.game.load_settings(self.settings)
# get available start positions
positions = scene.player_start_spots
self.num_pos = len(positions)
self.positions = scene.player_start_spots
self.num_pos = len(self.positions)
self.iterator_start_positions = 0
# action space
@@ -223,10 +228,12 @@ class CarlaEnvironment(Environment):
if action == key:
self.key_to_action[key_map[key]] = idx
self.num_speedup_steps = 30
self.num_speedup_steps = num_speedup_steps
self.max_speed = max_speed
# measurements
self.autopilot = None
self.planner = Planner(self.map_name)
# env initialization
self.reset_internal_state(True)
@@ -284,13 +291,28 @@ class CarlaEnvironment(Environment):
return settings
def _get_directions(self, current_point, end_point):
"""
Class that should return the directions to reach a certain goal
"""
directions = self.planner.get_next_command(
(current_point.location.x,
current_point.location.y, 0.22),
(current_point.orientation.x,
current_point.orientation.y,
current_point.orientation.z),
(end_point.location.x, end_point.location.y, 0.22),
(end_point.orientation.x, end_point.orientation.y, end_point.orientation.z))
return directions
def _open_server(self):
log_path = path.join(self.experiment_path if self.experiment_path is not None else '.', 'logs',
"CARLA_LOG_{}.txt".format(self.port))
if not os.path.exists(os.path.dirname(log_path)):
os.makedirs(os.path.dirname(log_path))
with open(log_path, "wb") as out:
cmd = [path.join(environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map,
cmd = [path.join(environ.get('CARLA_ROOT'), 'CarlaUE4.sh'), self.map_path,
"-benchmark", "-carla-server", "-fps={}".format(30 / self.frame_skip),
"-world-port={}".format(self.port),
"-windowed -ResX={} -ResY={}".format(self.server_width, self.server_height),
@@ -336,8 +358,9 @@ class CarlaEnvironment(Environment):
self.measurements = [measurements.player_measurements.forward_speed] + self.location
self.autopilot = measurements.player_measurements.autopilot_control
# action_p = ['%.2f' % member for member in [self.control.throttle, self.control.steer]]
# screen.success('REWARD: %.2f, ACTIONS: %s' % (self.reward, action_p))
# The directions to reach the goal (0 Follow lane, 1 Left, 2 Right, 3 Straight)
directions = int(self._get_directions(measurements.player_measurements.transform, self.current_goal) - 2)
self.state['high_level_command'] = directions
if (measurements.game_timestamp >= self.episode_max_time) or is_collision:
# screen.success('EPISODE IS DONE. GameTime: {}, Collision: {}'.format(str(measurements.game_timestamp),
@@ -348,11 +371,20 @@ class CarlaEnvironment(Environment):
def _take_action(self, action):
self.control = VehicleControl()
# transform the 2 value action (throttle - brake, steer) into a 3 value action (throttle, brake, steer)
self.control.throttle = np.clip(action[0], 0, 1)
self.control.steer = np.clip(action[1], -1, 1)
self.control.brake = np.abs(np.clip(action[0], -1, 0))
# prevent braking
if not self.allow_braking:
self.control.brake = 0
# prevent over speeding
if hasattr(self, 'measurements') and self.measurements[0] * 3.6 > self.max_speed and self.control.brake == 0:
self.control.throttle = 0.0
self.control.hand_brake = False
self.control.reverse = False
@@ -369,6 +401,9 @@ class CarlaEnvironment(Environment):
self.game.connect()
self.game.start_episode(self.iterator_start_positions)
# choose a random goal destination TODO: follow the CoRL destinations and start positions
self.current_goal = random.choice(self.positions)
# start the game with some initial speed
for i in range(self.num_speedup_steps):
self._take_action([1.0, 0])