mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
rename AgentInterface.emulate_observe_on_trainer or observe_transition and call from AgentInterface.observe
This commit is contained in:
@@ -900,31 +900,35 @@ class Agent(AgentInterface):
|
||||
# make agent specific changes to the transition if needed
|
||||
transition = self.update_transition_before_adding_to_replay_buffer(transition)
|
||||
|
||||
# sum up the total shaped reward
|
||||
self.total_shaped_reward_in_current_episode += transition.reward
|
||||
self.total_reward_in_current_episode += env_response.reward
|
||||
self.shaped_reward.add_sample(transition.reward)
|
||||
self.reward.add_sample(env_response.reward)
|
||||
|
||||
# add action info to transition
|
||||
if type(self.parent).__name__ == 'CompositeAgent':
|
||||
transition.add_info(self.parent.last_action_info.__dict__)
|
||||
else:
|
||||
transition.add_info(self.last_action_info.__dict__)
|
||||
|
||||
# create and store the transition
|
||||
if self.phase in [RunPhase.TRAIN, RunPhase.HEATUP]:
|
||||
# for episodic memories we keep the transitions in a local buffer until the episode is ended.
|
||||
# for regular memories we insert the transitions directly to the memory
|
||||
self.current_episode_buffer.insert(transition)
|
||||
if not isinstance(self.memory, EpisodicExperienceReplay) \
|
||||
and not self.ap.algorithm.store_transitions_only_when_episodes_are_terminated:
|
||||
self.call_memory('store', transition)
|
||||
self.total_reward_in_current_episode += env_response.reward
|
||||
self.reward.add_sample(env_response.reward)
|
||||
|
||||
if self.ap.visualization.dump_in_episode_signals:
|
||||
self.update_step_in_episode_log()
|
||||
return self.observe_transition(transition)
|
||||
|
||||
return transition.game_over
|
||||
def observe_transition(self, transition):
|
||||
# sum up the total shaped reward
|
||||
self.total_shaped_reward_in_current_episode += transition.reward
|
||||
self.shaped_reward.add_sample(transition.reward)
|
||||
|
||||
# create and store the transition
|
||||
if self.phase in [RunPhase.TRAIN, RunPhase.HEATUP]:
|
||||
# for episodic memories we keep the transitions in a local buffer until the episode is ended.
|
||||
# for regular memories we insert the transitions directly to the memory
|
||||
self.current_episode_buffer.insert(transition)
|
||||
if not isinstance(self.memory, EpisodicExperienceReplay) \
|
||||
and not self.ap.algorithm.store_transitions_only_when_episodes_are_terminated:
|
||||
self.call_memory('store', transition)
|
||||
|
||||
if self.ap.visualization.dump_in_episode_signals:
|
||||
self.update_step_in_episode_log()
|
||||
|
||||
return transition.game_over
|
||||
|
||||
def post_training_commands(self) -> None:
|
||||
"""
|
||||
@@ -1009,38 +1013,6 @@ class Agent(AgentInterface):
|
||||
for network in self.networks.values():
|
||||
network.sync()
|
||||
|
||||
# TODO-remove - this is a temporary flow, used by the trainer worker, duplicated from observe() - need to create
|
||||
# an external trainer flow reusing the existing flow and methods [e.g. observe(), step(), act()]
|
||||
def emulate_observe_on_trainer(self, transition: Transition) -> bool:
|
||||
"""
|
||||
This emulates the observe using the transition obtained from the rollout worker on the training worker
|
||||
in case of distributed training.
|
||||
Given a response from the environment, distill the observation from it and store it for later use.
|
||||
The response should be a dictionary containing the performed action, the new observation and measurements,
|
||||
the reward, a game over flag and any additional information necessary.
|
||||
:return:
|
||||
"""
|
||||
|
||||
# sum up the total shaped reward
|
||||
self.total_shaped_reward_in_current_episode += transition.reward
|
||||
self.total_reward_in_current_episode += transition.reward
|
||||
self.shaped_reward.add_sample(transition.reward)
|
||||
self.reward.add_sample(transition.reward)
|
||||
|
||||
# create and store the transition
|
||||
if self.phase in [RunPhase.TRAIN, RunPhase.HEATUP]:
|
||||
# for episodic memories we keep the transitions in a local buffer until the episode is ended.
|
||||
# for regular memories we insert the transitions directly to the memory
|
||||
self.current_episode_buffer.insert(transition)
|
||||
if not isinstance(self.memory, EpisodicExperienceReplay) \
|
||||
and not self.ap.algorithm.store_transitions_only_when_episodes_are_terminated:
|
||||
self.call_memory('store', transition)
|
||||
|
||||
if self.ap.visualization.dump_in_episode_signals:
|
||||
self.update_step_in_episode_log()
|
||||
|
||||
return transition.game_over
|
||||
|
||||
def get_success_rate(self) -> float:
|
||||
return self.num_successes_across_evaluation_episodes / self.num_evaluation_episodes_completed
|
||||
|
||||
|
||||
@@ -125,23 +125,6 @@ class AgentInterface(object):
|
||||
"""
|
||||
raise NotImplementedError("")
|
||||
|
||||
# TODO-remove - this is a temporary flow, used by the trainer worker, duplicated from observe() - need to create
|
||||
# an external trainer flow reusing the existing flow and methods [e.g. observe(), step(), act()]
|
||||
def emulate_observe_on_trainer(self, transition: Transition) -> bool:
|
||||
"""
|
||||
This emulates the act using the transition obtained from the rollout worker on the training worker
|
||||
in case of distributed training.
|
||||
Gets a response from the environment.
|
||||
Processes this information for later use. For example, create a transition and store it in memory.
|
||||
The action info (a class containing any info the agent wants to store regarding its action decision process) is
|
||||
stored by the agent itself when deciding on the action.
|
||||
:param env_response: a EnvResponse containing the response from the environment
|
||||
:return: a done signal which is based on the agent knowledge. This can be different from the done signal from
|
||||
the environment. For example, an agent can decide to finish the episode each time it gets some
|
||||
intrinsic reward
|
||||
"""
|
||||
raise NotImplementedError("")
|
||||
|
||||
def collect_savers(self, parent_path_suffix: str) -> SaverCollection:
|
||||
"""
|
||||
Collect all of agent savers
|
||||
|
||||
@@ -312,7 +312,7 @@ class LevelManager(EnvironmentInterface):
|
||||
|
||||
# for i in range(self.steps_limit.num_steps):
|
||||
# let the agent observe the result and decide if it wants to terminate the episode
|
||||
done = acting_agent.emulate_observe_on_trainer(transition)
|
||||
done = acting_agent.observe_transition(transition)
|
||||
acting_agent.act(transition.action)
|
||||
|
||||
if done:
|
||||
|
||||
Reference in New Issue
Block a user