mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
Simulating the act on the trainer. (#65)
* Remove the use of daemon threads for Redis subscribe. * Emulate act and observe on trainer side to update internal vars.
This commit is contained in:
committed by
Balaji Subramaniam
parent
fe6857eabd
commit
fde73ced13
@@ -12,7 +12,7 @@ import os
|
||||
import math
|
||||
|
||||
from rl_coach.base_parameters import TaskParameters, DistributedCoachSynchronizationType
|
||||
from rl_coach.core_types import EnvironmentSteps, RunPhase
|
||||
from rl_coach.core_types import EnvironmentSteps, RunPhase, EnvironmentEpisodes
|
||||
from google.protobuf import text_format
|
||||
from tensorflow.python.training.checkpoint_state_pb2 import CheckpointState
|
||||
from rl_coach.data_stores.data_store import SyncFiles
|
||||
@@ -81,21 +81,23 @@ def rollout_worker(graph_manager, checkpoint_dir, data_store, num_workers):
|
||||
|
||||
task_parameters = TaskParameters()
|
||||
task_parameters.__dict__['checkpoint_restore_dir'] = checkpoint_dir
|
||||
time.sleep(30)
|
||||
|
||||
graph_manager.create_graph(task_parameters)
|
||||
with graph_manager.phase_context(RunPhase.TRAIN):
|
||||
error_compensation = 100
|
||||
|
||||
last_checkpoint = 0
|
||||
|
||||
act_steps = math.ceil((graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps + error_compensation)/num_workers)
|
||||
act_steps = math.ceil((graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps)/num_workers)
|
||||
|
||||
for i in range(int(graph_manager.improve_steps.num_steps/act_steps)):
|
||||
|
||||
if should_stop(checkpoint_dir):
|
||||
break
|
||||
|
||||
graph_manager.act(EnvironmentSteps(num_steps=act_steps))
|
||||
if type(graph_manager.agent_params.algorithm.num_consecutive_playing_steps) == EnvironmentSteps:
|
||||
graph_manager.act(EnvironmentSteps(num_steps=act_steps), wait_for_full_episode=graph_manager.agent_params.algorithm.act_for_full_episodes)
|
||||
elif type(graph_manager.agent_params.algorithm.num_consecutive_playing_steps) == EnvironmentEpisodes:
|
||||
graph_manager.act(EnvironmentEpisodes(num_steps=act_steps))
|
||||
|
||||
new_checkpoint = get_latest_checkpoint(checkpoint_dir)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user