# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from agents import value_optimization_agent as voa import utils # Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf class BootstrappedDQNAgent(voa.ValueOptimizationAgent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): voa.ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id) def reset_game(self, do_not_reset_env=False): voa.ValueOptimizationAgent.reset_game(self, do_not_reset_env) self.exploration_policy.select_head() def learn_from_batch(self, batch): current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch) # for the action we actually took, the error is: # TD error = r + discount*max(q_st_plus_1) - q_st # for all other actions, the error is 0 q_st_plus_1 = self.main_network.target_network.predict(next_states) # initialize with the current prediction so that we will TD_targets = self.main_network.online_network.predict(current_states) # only update the action that we have actually done in this transition for i in range(self.tp.batch_size): mask = batch[i].info['mask'] for head_idx in range(self.tp.exploration.architecture_num_q_heads): if mask[head_idx] == 1: TD_targets[head_idx][i, actions[i]] = rewards[i] + \ (1.0 - game_overs[i]) * self.tp.agent.discount * np.max( q_st_plus_1[head_idx][i], 0) result = self.main_network.train_and_sync_networks(current_states, TD_targets) total_loss = result[0] return total_loss def act(self, phase=utils.RunPhase.TRAIN): voa.ValueOptimizationAgent.act(self, phase) mask = np.random.binomial(1, self.tp.exploration.bootstrapped_data_sharing_probability, self.tp.exploration.architecture_num_q_heads) self.memory.update_last_transition_info({'mask': mask})