# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ast import json import sys import agents import configurations as conf import environments as env import exploration_policies as ep import presets def json_to_preset(json_path): with open(json_path, 'r') as json_file: run_dict = json.loads(json_file.read()) if run_dict['preset'] is None: tuning_parameters = conf.Preset(eval('agents.' + run_dict['agent_type']), eval('env.' + run_dict['environment_type']), eval('ep.' + run_dict['exploration_policy_type'])) else: tuning_parameters = eval('presets.' + run_dict['preset'])() # Override existing parts of the preset if run_dict['agent_type'] is not None: tuning_parameters.agent = eval('agents.' + run_dict['agent_type'])() if run_dict['environment_type'] is not None: tuning_parameters.env = eval('env.' + run_dict['environment_type'])() if run_dict['exploration_policy_type'] is not None: tuning_parameters.exploration = eval('ep.' + run_dict['exploration_policy_type'])() # human control if run_dict['play']: tuning_parameters.agent.type = 'HumanAgent' tuning_parameters.env.human_control = True tuning_parameters.num_heatup_steps = 0 if run_dict['level']: tuning_parameters.env.level = run_dict['level'] if run_dict['custom_parameter'] is not None: unstripped_key_value_pairs = [pair.split('=') for pair in run_dict['custom_parameter'].split(';')] stripped_key_value_pairs = [tuple([pair[0].strip(), ast.literal_eval(pair[1].strip())]) for pair in unstripped_key_value_pairs] # load custom parameters into run_dict for key, value in stripped_key_value_pairs: run_dict[key] = value for key in ['agent_type', 'environment_type', 'exploration_policy_type', 'preset', 'custom_parameter']: run_dict.pop(key, None) # load parameters from run_dict to tuning_parameters for key, value in run_dict.items(): if ((sys.version_info[0] == 2 and type(value) == unicode) or (sys.version_info[0] == 3 and type(value) == str)): value = '"{}"'.format(value) exec('tuning_parameters.{} = {}'.format(key, value)) in globals(), locals() return tuning_parameters class Doom_Basic_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.num_heatup_steps = 1000 class Doom_Basic_QRDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.QuantileRegressionDQN, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 class Doom_Basic_OneStepQ(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NStepQ, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.learning_rate = 0.00025 self.num_heatup_steps = 0 self.agent.num_steps_between_copying_online_weights_to_target = 100 self.agent.optimizer_type = 'Adam' self.clip_gradients = 1000 self.agent.targets_horizon = '1-Step' class Doom_Basic_NStepQ(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NStepQ, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.learning_rate = 0.000025 self.num_heatup_steps = 0 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.agent.optimizer_type = 'Adam' self.clip_gradients = 1000 class Doom_Basic_A2C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.Doom, conf.CategoricalExploration) self.env.level = 'basic' self.agent.policy_gradient_rescaler = 'A_VALUE' self.learning_rate = 0.00025 self.num_heatup_steps = 100 self.env.reward_scaling = 100. class Doom_Basic_Dueling_DDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDQN, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.agent.output_types = [conf.OutputTypes.DuelingQ] self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.num_heatup_steps = 1000 class Doom_Basic_Dueling_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DuelingDQN, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.num_heatup_steps = 1000 class CartPole_Dueling_DDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDQN, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.output_types = [conf.OutputTypes.DuelingQ] self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 100 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 100 self.test_min_return_threshold = 150 class Doom_Health_MMC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.MMC, conf.Doom, conf.ExplorationParameters) self.env.level = 'HEALTH_GATHERING' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 class CartPole_MMC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.MMC, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 90 self.test_min_return_threshold = 150 class CartPole_PAL(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PAL, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 100 self.test_min_return_threshold = 150 class CartPole_DFP(conf.Preset): def __init__(self): Preset.__init__(self, conf.DFP, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.0001 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 self.agent.use_accumulated_reward_as_measurement = True self.agent.goal_vector = [1.0] class Doom_Basic_DFP(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DFP, conf.Doom, conf.ExplorationParameters) self.env.level = 'BASIC' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.0001 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 self.agent.use_accumulated_reward_as_measurement = True self.agent.goal_vector = [0.0, 1.0] # self.agent.num_consecutive_playing_steps = 10 class Doom_Health_DFP(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DFP, conf.Doom, conf.ExplorationParameters) self.env.level = 'HEALTH_GATHERING' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 self.agent.use_accumulated_reward_as_measurement = True class Doom_Deadly_Corridor_Bootstrapped_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BootstrappedDQN, conf.Doom, conf.BootstrappedDQNExploration) self.env.level = 'deadly_corridor' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.agent.num_steps_between_copying_online_weights_to_target = 1000 self.num_heatup_steps = 1000 class CartPole_Bootstrapped_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BootstrappedDQN, conf.GymVectorObservation, conf.BootstrappedDQNExploration) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 200 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 200 self.test_min_return_threshold = 150 class CartPole_PG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PolicyGradient, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'CartPole-v0' self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP' self.learning_rate = 0.001 self.num_heatup_steps = 100 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 150 self.test_min_return_threshold = 150 class CartPole_PPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'CartPole-v0' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 512 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'LBFGS' self.env.normalize_observation = True self.test = True self.test_max_step_threshold = 200 self.test_min_return_threshold = 150 class CartPole_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'CartPole-v0' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 512 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True self.test = True self.test_max_step_threshold = 200 self.test_min_return_threshold = 150 class CartPole_A2C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'CartPole-v0' self.agent.policy_gradient_rescaler = 'A_VALUE' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.env.reward_scaling = 200. self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 300 self.test_min_return_threshold = 150 class CartPole_OneStepQ(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NStepQ, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.discount = 1.0 self.agent.targets_horizon = '1-Step' class CartPole_NStepQ(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NStepQ, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.0001 self.exploration.epsilon_decay_steps = 10000 self.num_heatup_steps = 0 self.agent.discount = 0.99 self.agent.num_steps_between_gradient_updates = 5 self.test = True self.test_max_step_threshold = 2000 self.test_min_return_threshold = 150 self.test_num_workers = 8 class CartPole_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 self.test = True self.test_max_step_threshold = 150 self.test_min_return_threshold = 150 class CartPole_C51(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.CategoricalDQN, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 # self.env.reward_scaling = 20. self.agent.v_min = 0.0 self.agent.v_max = 200.0 self.test = True self.test_max_step_threshold = 150 self.test_min_return_threshold = 150 class CartPole_QRDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.QuantileRegressionDQN, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.agent.num_steps_between_copying_online_weights_to_target = 100 self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 3000 self.agent.discount = 1.0 # The below preset matches the hyper-parameters setting as in the original DQN paper. # This a very resource intensive preset, and might easily blow up your RAM (> 100GB of usage). # Try reducing the number of transitions in the experience replay (50e3 might be a reasonable number to start with), # so to make sure it fits your RAM. class Breakout_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.05 self.num_heatup_steps = 50000 self.agent.num_consecutive_playing_steps = 4 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 25 self.agent.replace_mse_with_huber_loss = True # self.env.crop_observation = True # TODO: remove # self.rescaling_interpolation_type = 'nearest' # TODO: remove class Breakout_DDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 30000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.01 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.001 self.num_heatup_steps = 50000 self.agent.num_consecutive_playing_steps = 4 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 25 self.agent.replace_mse_with_huber_loss = True class Breakout_Dueling_DDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.output_types = [conf.OutputTypes.DuelingQ] self.agent.num_steps_between_copying_online_weights_to_target = 30000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.01 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.001 self.num_heatup_steps = 50000 self.agent.num_consecutive_playing_steps = 4 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 25 self.agent.replace_mse_with_huber_loss = True class Alien_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'AlienDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.05 self.num_heatup_steps = 50000 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5 class Breakout_C51(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.CategoricalDQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.01 self.exploration.epsilon_decay_steps = 1000000 self.env.reward_clipping_max = 1.0 self.env.reward_clipping_min = -1.0 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.001 self.num_heatup_steps = 50000 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5000000 class Breakout_QRDQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.QuantileRegressionDQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.01 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.001 self.num_heatup_steps = 50000 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 50 class Atari_DQN_TestBench(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.05 self.num_heatup_steps = 10000 self.evaluation_episodes = 25 self.evaluate_every_x_episodes = 1000 self.num_training_iterations = 500 class Doom_Basic_PG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PolicyGradient, conf.Doom, conf.CategoricalExploration) self.env.level = 'basic' self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP' self.learning_rate = 0.00001 self.num_heatup_steps = 0 self.agent.beta_entropy = 0.01 class InvertedPendulum_PG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PolicyGradient, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'InvertedPendulum-v1' self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP' self.learning_rate = 0.001 self.num_heatup_steps = 0 class Pendulum_PG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PolicyGradient, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'Pendulum-v0' self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.agent.apply_gradients_every_x_episodes = 10 class Pendulum_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'Pendulum-v0' self.learning_rate = 0.001 self.num_heatup_steps = 1000 self.env.normalize_observation = False self.test = True self.test_max_step_threshold = 100 self.test_min_return_threshold = -250 class InvertedPendulum_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.GymVectorObservation, conf.OUExploration) self.env.level = 'InvertedPendulum-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 100 self.env.normalize_observation = True class InvertedPendulum_PPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'InvertedPendulum-v1' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 5000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.96 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.agent.shared_optimizer = False self.agent.async_training = True self.env.normalize_observation = True class Pendulum_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Pendulum-v0' self.learning_rate = 0.00005 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True self.agent.beta_entropy = 0.01 class Hopper_DPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Hopper-v1' self.learning_rate = 0.00001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 5000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.96 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.agent.async_training = True self.env.normalize_observation = True class InvertedPendulum_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'InvertedPendulum-v1' self.learning_rate = 0.00005 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Humanoid_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Humanoid-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Hopper_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Hopper-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class InvertedPendulum_ClippedPPO_Roboschool(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.Roboschool, conf.ExplorationParameters) self.env.level = 'RoboschoolInvertedPendulum-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class HalfCheetah_ClippedPPO_Roboschool(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.Roboschool, conf.ExplorationParameters) self.env.level = 'RoboschoolHalfCheetah-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Hopper_ClippedPPO_Roboschool(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.Roboschool, conf.ExplorationParameters) self.env.level = 'RoboschoolHopper-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Ant_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Ant-v1' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Hopper_ClippedPPO_Distributed(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Hopper-v1' self.learning_rate = 0.00001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 10000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'LBFGS' self.env.normalize_observation = True class Hopper_DDPG_Roboschool(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.Roboschool, conf.OUExploration) self.env.level = 'RoboschoolHopper-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 100 class Hopper_PPO_Roboschool(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.Roboschool, conf.ExplorationParameters) self.env.level = 'RoboschoolHopper-v1' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 5000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'GENERALIZED_ADVANTAGE_ESTIMATION' self.agent.gae_lambda = 0.96 self.visualization.dump_csv = True self.agent.optimizer_type = 'LBFGS' class Hopper_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.GymVectorObservation, conf.OUExploration) self.env.level = 'Hopper-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 100 self.env.normalize_observation = True class Hopper_DDDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDDPG, conf.GymVectorObservation, conf.OUExploration) self.env.level = 'Hopper-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 100 self.env.normalize_observation = True class Hopper_PPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'Hopper-v1' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 5000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.96 self.visualization.dump_csv = True self.agent.optimizer_type = 'LBFGS' # self.clip_gradients = 2 self.env.normalize_observation = True class Walker_PPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.PPO, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'Walker2d-v1' self.learning_rate = 0.001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 5000 self.agent.discount = 0.99 self.batch_size = 128 self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.gae_lambda = 0.96 self.visualization.dump_csv = True self.agent.optimizer_type = 'LBFGS' self.env.normalize_observation = True class HalfCheetah_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.GymVectorObservation, conf.OUExploration) self.env.level = 'HalfCheetah-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.env.normalize_observation = True class Ant_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.GymVectorObservation, conf.OUExploration) self.env.level = 'Ant-v1' self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.env.normalize_observation = True class Pendulum_NAF(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NAF, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'Pendulum-v0' self.learning_rate = 0.001 self.num_heatup_steps = 1000 self.batch_size = 100 # self.env.reward_scaling = 1000 self.test = True self.test_max_step_threshold = 100 self.test_min_return_threshold = -250 class InvertedPendulum_NAF(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NAF, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'InvertedPendulum-v1' self.learning_rate = 0.001 self.num_heatup_steps = 1000 self.batch_size = 100 class Hopper_NAF(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NAF, conf.GymVectorObservation, conf.AdditiveNoiseExploration) self.env.level = 'Hopper-v1' self.learning_rate = 0.0005 self.num_heatup_steps = 1000 self.batch_size = 100 self.agent.async_training = True self.env.normalize_observation = True class CartPole_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'CartPole-v0' self.learning_rate = 0.00025 self.agent.num_episodes_in_experience_replay = 200 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 1000 self.exploration.final_epsilon = 0.1 self.agent.discount = 0.99 self.seed = 0 self.test = True self.test_max_step_threshold = 200 self.test_min_return_threshold = 150 class Doom_Basic_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.learning_rate = 0.00001 self.agent.num_transitions_in_experience_replay = 100000 # self.exploration.initial_epsilon = 0.1 # TODO: try exploration # self.exploration.final_epsilon = 0.1 # self.exploration.epsilon_decay_steps = 1000000 self.num_heatup_steps = 200 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5 self.seed = 123 class Montezuma_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters) self.env.level = 'MontezumaRevenge-v0' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.agent.num_playing_steps_between_two_training_steps = 1 class Breakout_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters) self.env.level = 'BreakoutDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00001 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 0.1 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.05 self.num_heatup_steps = 1000 self.env.reward_clipping_max = None self.env.reward_clipping_min = None self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 25 self.seed = 123 class Doom_Health_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Doom, conf.ExplorationParameters) self.env.level = 'HEALTH_GATHERING' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 self.agent.num_playing_steps_between_two_training_steps = 1 class Doom_Health_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Doom, conf.ExplorationParameters) self.env.level = 'HEALTH_GATHERING' self.agent.num_episodes_in_experience_replay = 200 self.learning_rate = 0.00025 self.num_heatup_steps = 1000 self.exploration.epsilon_decay_steps = 10000 self.agent.num_steps_between_copying_online_weights_to_target = 1000 class Pong_NEC_LSTM(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters) self.env.level = 'PongDeterministic-v4' self.learning_rate = 0.001 self.agent.num_transitions_in_experience_replay = 1000000 self.agent.middleware_type = conf.MiddlewareTypes.LSTM self.exploration.initial_epsilon = 0.5 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.num_heatup_steps = 500 class Pong_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters) self.env.level = 'PongDeterministic-v4' self.learning_rate = 0.00001 self.agent.num_transitions_in_experience_replay = 100000 self.exploration.initial_epsilon = 0.1 # TODO: try exploration self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.num_heatup_steps = 2000 self.env.reward_clipping_max = None self.env.reward_clipping_min = None self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5 self.env.crop_observation = True # TODO: remove self.env.random_initialization_steps = 1 # TODO: remove # self.seed = 123 class Alien_NEC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.NEC, conf.Atari, conf.ExplorationParameters) self.env.level = 'AlienDeterministic-v4' self.learning_rate = 0.0001 self.agent.num_transitions_in_experience_replay = 100000 self.exploration.initial_epsilon = 0.1 # TODO: try exploration self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.num_heatup_steps = 3000 self.env.reward_clipping_max = None self.env.reward_clipping_min = None self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5 self.seed = 123 class Pong_DQN(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DQN, conf.Atari, conf.ExplorationParameters) self.env.level = 'PongDeterministic-v4' self.agent.num_steps_between_copying_online_weights_to_target = 10000 self.learning_rate = 0.00025 self.agent.num_transitions_in_experience_replay = 1000000 self.exploration.initial_epsilon = 1.0 self.exploration.final_epsilon = 0.1 self.exploration.epsilon_decay_steps = 1000000 self.exploration.evaluation_policy = 'EGreedy' self.exploration.evaluation_epsilon = 0.05 self.num_heatup_steps = 50000 self.evaluation_episodes = 1 self.evaluate_every_x_episodes = 5 self.seed = 123 class CartPole_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'CartPole-v0' self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.env.reward_scaling = 200. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.01 self.agent.num_steps_between_gradient_updates = 5 self.agent.middleware_type = conf.MiddlewareTypes.FC self.test = True self.test_max_step_threshold = 1000 self.test_min_return_threshold = 150 self.test_num_workers = 8 class MountainCar_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.CategoricalExploration) self.env.level = 'MountainCar-v0' self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.env.reward_scaling = 200. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.01 self.agent.num_steps_between_gradient_updates = 5 self.agent.middleware_type = conf.MiddlewareTypes.FC class InvertedPendulum_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'InvertedPendulum-v1' self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.env.reward_scaling = 200. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 30 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.005 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC class Hopper_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'Hopper-v1' self.agent.policy_gradient_rescaler = 'GAE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.00002 self.num_heatup_steps = 0 self.env.reward_scaling = 20. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 0.98 self.agent.beta_entropy = 0.005 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC class HopperIceWall_A3C(Hopper_A3C): def __init__(self): Hopper_A3C.__init__(self) self.env.level = 'HopperIceWall-v0' class HopperStairs_A3C(Hopper_A3C): def __init__(self): Hopper_A3C.__init__(self) self.env.level = 'HopperStairs-v0' class HopperBullet_A3C(Hopper_A3C): def __init__(self): Hopper_A3C.__init__(self) self.env.level = 'HopperBulletEnv-v0' class Kuka_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'KukaBulletEnv-v0' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Minitaur_ClippedPPO(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ClippedPPO, conf.GymVectorObservation, conf.ExplorationParameters) self.env.level = 'MinitaurBulletEnv-v0' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.num_consecutive_training_steps = 1 self.agent.num_consecutive_playing_steps = 2048 self.agent.discount = 0.99 self.batch_size = 64 self.agent.policy_gradient_rescaler = 'GAE' self.agent.gae_lambda = 0.95 self.visualization.dump_csv = True self.agent.optimizer_type = 'Adam' self.env.normalize_observation = True class Walker_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'Walker2d-v1' self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.00002 self.num_heatup_steps = 0 self.env.reward_scaling = 20. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.005 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC class Ant_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'Ant-v1' self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.00002 self.num_heatup_steps = 0 self.env.reward_scaling = 20. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.005 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC self.env.normalize_observation = True class AntBullet_A3C(Ant_A3C): def __init__(self): Ant_A3C.__init__(self) self.env.level = 'AntBulletEnv-v0' class AntMaze_A3C(Ant_A3C): def __init__(self): Ant_A3C.__init__(self) self.env.level = 'AntMaze-v0' class Humanoid_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'Humanoid-v1' self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.00002 self.num_heatup_steps = 0 self.env.reward_scaling = 20. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.005 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC self.env.normalize_observation = True class Pendulum_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'Pendulum-v0' self.agent.policy_gradient_rescaler = 'GAE' self.agent.optimizer_type = 'Adam' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.agent.discount = 0.99 self.agent.num_steps_between_gradient_updates = 5 self.agent.gae_lambda = 1 class BipedalWalker_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.GymVectorObservation, conf.EntropyExploration) self.env.level = 'BipedalWalker-v2' self.agent.policy_gradient_rescaler = 'A_VALUE' self.agent.optimizer_type = 'RMSProp' self.learning_rate = 0.00002 self.num_heatup_steps = 0 self.env.reward_scaling = 50. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 10 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.005 self.clip_gradients = None self.agent.middleware_type = conf.MiddlewareTypes.FC class Doom_Basic_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.Doom, conf.CategoricalExploration) self.env.level = 'basic' self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.env.reward_scaling = 100. self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 30 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.01 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC class Pong_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.Atari, conf.CategoricalExploration) self.env.level = 'PongDeterministic-v4' self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 0 self.env.reward_scaling = 1. self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 1. self.agent.beta_entropy = 0.01 self.clip_gradients = 40.0 self.agent.middleware_type = conf.MiddlewareTypes.FC class Breakout_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.Atari, conf.CategoricalExploration) self.env.level = 'BreakoutDeterministic-v4' self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 200 self.env.reward_scaling = 1. self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 20 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.05 self.clip_gradients = 40.0 self.agent.middleware_type = conf.MiddlewareTypes.FC class Carla_A3C(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.ActorCritic, conf.Carla, conf.EntropyExploration) self.agent.embedder_complexity = conf.EmbedderComplexity.Deep self.agent.policy_gradient_rescaler = 'GAE' self.learning_rate = 0.0001 self.num_heatup_steps = 0 # self.env.reward_scaling = 1.0e9 self.agent.discount = 0.99 self.agent.apply_gradients_every_x_episodes = 1 self.agent.num_steps_between_gradient_updates = 30 self.agent.gae_lambda = 1 self.agent.beta_entropy = 0.01 self.clip_gradients = 40 self.agent.middleware_type = conf.MiddlewareTypes.FC class Carla_DDPG(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.DDPG, conf.Carla, conf.OUExploration) self.agent.embedder_complexity = conf.EmbedderComplexity.Deep self.learning_rate = 0.0001 self.num_heatup_steps = 1000 self.agent.num_consecutive_training_steps = 5 class Carla_BC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BC, conf.Carla, conf.ExplorationParameters) self.agent.embedder_complexity = conf.EmbedderComplexity.Deep self.agent.load_memory_from_file_path = 'datasets/carla_town1.p' self.learning_rate = 0.0005 self.num_heatup_steps = 0 self.evaluation_episodes = 5 self.batch_size = 120 self.evaluate_every_x_training_iterations = 5000 class Doom_Basic_BC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters) self.env.level = 'basic' self.agent.load_memory_from_file_path = 'datasets/doom_basic.p' self.learning_rate = 0.0005 self.num_heatup_steps = 0 self.evaluation_episodes = 5 self.batch_size = 120 self.evaluate_every_x_training_iterations = 100 self.num_training_iterations = 2000 class Doom_Defend_BC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters) self.env.level = 'defend' self.agent.load_memory_from_file_path = 'datasets/doom_defend.p' self.learning_rate = 0.0005 self.num_heatup_steps = 0 self.evaluation_episodes = 5 self.batch_size = 120 self.evaluate_every_x_training_iterations = 100 class Doom_Deathmatch_BC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BC, conf.Doom, conf.ExplorationParameters) self.env.level = 'deathmatch' self.agent.load_memory_from_file_path = 'datasets/doom_deathmatch.p' self.learning_rate = 0.0005 self.num_heatup_steps = 0 self.evaluation_episodes = 5 self.batch_size = 120 self.evaluate_every_x_training_iterations = 100 class MontezumaRevenge_BC(conf.Preset): def __init__(self): conf.Preset.__init__(self, conf.BC, conf.Atari, conf.ExplorationParameters) self.env.level = 'MontezumaRevenge-v0' self.agent.load_memory_from_file_path = 'datasets/montezuma_revenge.p' self.learning_rate = 0.0005 self.num_heatup_steps = 0 self.evaluation_episodes = 5 self.batch_size = 120 self.evaluate_every_x_training_iterations = 100 self.exploration.evaluation_epsilon = 0.05 self.exploration.evaluation_policy = 'EGreedy' self.env.frame_skip = 1