# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.dqn_agent import DQNAgent, DQNAgentParameters from rl_coach.core_types import EnvironmentSteps from rl_coach.schedules import LinearSchedule class DDQNAgentParameters(DQNAgentParameters): def __init__(self): super().__init__() self.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(30000) self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.exploration.evaluation_epsilon = 0.001 @property def path(self): return 'rl_coach.agents.ddqn_agent:DDQNAgent' # Double DQN - https://arxiv.org/abs/1509.06461 class DDQNAgent(DQNAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) def select_actions(self, next_states, q_st_plus_1): return np.argmax(self.networks['main'].online_network.predict(next_states), 1)