import tensorflow as tf from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, CsvDataset from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import LinearSchedule from rl_coach.memories.episodic import EpisodicExperienceReplayParameters from rl_coach.architectures.head_parameters import QHeadParameters from rl_coach.agents.ddqn_bcq_agent import DDQNBCQAgentParameters from rl_coach.agents.ddqn_bcq_agent import KNNParameters DATASET_SIZE = 50000 #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(1) schedule_params.evaluation_steps = EnvironmentEpisodes(10) schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE) ######### # Agent # ######### agent_params = DDQNBCQAgentParameters() agent_params.network_wrappers['main'].batch_size = 128 # TODO cross-DL framework abstraction for a constant initializer? agent_params.network_wrappers['main'].heads_parameters = [QHeadParameters(output_bias_initializer=tf.constant_initializer(-100))] agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps( 100) agent_params.algorithm.discount = 0.99 agent_params.algorithm.action_drop_method_parameters = KNNParameters() # NN configuration agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False agent_params.network_wrappers['main'].softmax_temperature = 0.2 # ER size agent_params.memory = EpisodicExperienceReplayParameters() # DATATSET_PATH = 'acrobot.csv' # agent_params.memory.load_memory_from_file_path = CsvDataset(DATATSET_PATH, True) # E-Greedy schedule agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000) agent_params.exploration.evaluation_epsilon = 0 # Experience Generating Agent parameters experience_generating_agent_params = DDQNAgentParameters() # schedule parameters experience_generating_schedule_params = ScheduleParameters() experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000) experience_generating_schedule_params.improve_steps = TrainingSteps( DATASET_SIZE - experience_generating_schedule_params.heatup_steps.num_steps) experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(1) # DQN params experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100) experience_generating_agent_params.algorithm.discount = 0.99 experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) # NN configuration experience_generating_agent_params.network_wrappers['main'].learning_rate = 0.0001 experience_generating_agent_params.network_wrappers['main'].batch_size = 128 experience_generating_agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False experience_generating_agent_params.network_wrappers['main'].heads_parameters = \ [QHeadParameters(output_bias_initializer=tf.constant_initializer(-100))] # ER size experience_generating_agent_params.memory = EpisodicExperienceReplayParameters() experience_generating_agent_params.memory.max_size = \ (MemoryGranularity.Transitions, experience_generating_schedule_params.heatup_steps.num_steps + experience_generating_schedule_params.improve_steps.num_steps + 1) # E-Greedy schedule experience_generating_agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, DATASET_SIZE) experience_generating_agent_params.exploration.evaluation_epsilon = 0 ################ # Environment # ################ env_params = GymVectorEnvironment(level='Acrobot-v1') ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 150 preset_validation_params.max_episodes_to_achieve_reward = 50 preset_validation_params.read_csv_tries = 500 graph_manager = BatchRLGraphManager(agent_params=agent_params, experience_generating_agent_params=experience_generating_agent_params, experience_generating_schedule_params=experience_generating_schedule_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1), preset_validation_params=preset_validation_params, reward_model_num_epochs=30, train_to_eval_ratio=0.4)