from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4, atari_schedule from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters from rl_coach.schedules import LinearSchedule ######### # Agent # ######### agent_params = DDQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.00025/4 agent_params.memory = PrioritizedExperienceReplayParameters() agent_params.memory.beta = LinearSchedule(0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames ############### # Environment # ############### env_params = Atari(level=SingleLevelSelection(atari_deterministic_v4)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['breakout', 'pong', 'space_invaders'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=atari_schedule, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)