from rl_coach.agents.bc_agent import BCAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import Atari from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.core_types import PickledReplayBuffer #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(500) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = BCAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000) # agent_params.memory.discount = 0.99 agent_params.algorithm.discount = 0.99 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0) agent_params.memory.load_memory_from_file_path = PickledReplayBuffer('datasets/montezuma_revenge.p') ############### # Environment # ############### env_params = Atari(level='MontezumaRevenge-v0') env_params.random_initialization_steps = 30 ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test_using_a_trace_test = False graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)