from rl_coach.agents.ppo_agent import PPOAgentParameters from rl_coach.architectures.layers import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters, DistributedCoachSynchronizationType from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.filters.filter import InputFilter from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(1e10) schedule_params.steps_between_evaluation_periods = EnvironmentSteps(4000) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = PPOAgentParameters() agent_params.network_wrappers['actor'].learning_rate = 5e-5 agent_params.network_wrappers['critic'].learning_rate = 5e-5 agent_params.network_wrappers['actor'].input_embedders_parameters['observation'].scheme = [Dense(64)] agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense(64)] agent_params.network_wrappers['critic'].input_embedders_parameters['observation'].scheme = [Dense(64)] agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense(64)] agent_params.input_filter = InputFilter() agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter()) agent_params.algorithm.initial_kl_coefficient = 0.2 agent_params.algorithm.gae_lambda = 1.0 # Distributed Coach synchronization type. agent_params.algorithm.distributed_coach_synchronization_type = DistributedCoachSynchronizationType.SYNC ############### # Environment # ############### env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 3000 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)