from rl_coach.agents.soft_actor_critic_agent import SoftActorCriticAgentParameters from rl_coach.architectures.layers import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps from rl_coach.filters.filter import InputFilter from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2 from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### # see graph_manager.py for possible schedule parameters schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentSteps(3000000) schedule_params.steps_between_evaluation_periods = EnvironmentSteps(1000) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(10000) ######### # Agent # ######### agent_params = SoftActorCriticAgentParameters() # override default parameters: # value (v) networks parameters agent_params.network_wrappers['v'].batch_size = 256 agent_params.network_wrappers['v'].learning_rate = 0.0003 agent_params.network_wrappers['v'].middleware_parameters.scheme = [Dense(256)] # critic (q) network parameters agent_params.network_wrappers['q'].heads_parameters[0].network_layers_sizes = (256, 256) agent_params.network_wrappers['q'].batch_size = 256 agent_params.network_wrappers['q'].learning_rate = 0.0003 # actor (policy) network parameters agent_params.network_wrappers['policy'].batch_size = 256 agent_params.network_wrappers['policy'].learning_rate = 0.0003 agent_params.network_wrappers['policy'].middleware_parameters.scheme = [Dense(256)] # Input Filter # SAC requires reward scaling for Mujoco environments. # according to the paper: # Hopper, Walker-2d, HalfCheetah, Ant - requires scaling of 5 # Humanoid - requires scaling of 20 agent_params.input_filter = InputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(5)) ############### # Environment # ############### env_params = GymVectorEnvironment(level=SingleLevelSelection(mujoco_v2)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 2200 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(), preset_validation_params=preset_validation_params)