# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.imitation_agent import ImitationAgent from rl_coach.architectures.head_parameters import PolicyHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.base_parameters import AgentParameters, AlgorithmParameters, NetworkParameters, \ MiddlewareScheme from rl_coach.exploration_policies.e_greedy import EGreedyParameters from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters class BCAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() class BCNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium) self.heads_parameters = [PolicyHeadParameters()] self.optimizer_type = 'Adam' self.batch_size = 32 self.replace_mse_with_huber_loss = False self.create_target_network = False class BCAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=BCAlgorithmParameters(), exploration=EGreedyParameters(), memory=ExperienceReplayParameters(), networks={"main": BCNetworkParameters()}) @property def path(self): return 'rl_coach.agents.bc_agent:BCAgent' # Behavioral Cloning Agent class BCAgent(ImitationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) @property def is_on_policy(self) -> bool: return False def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # When using a policy head, the targets refer to the advantages that we are normally feeding the head with. # In this case, we need the policy head to just predict probabilities, so while we usually train the network # with log(Pi)*Advantages, in this specific case we will train it to log(Pi), which after the softmax will # predict Pi (=probabilities) targets = np.ones(batch.actions().shape[0]) result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys), 'output_0_0': batch.actions()}, targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads