# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy from typing import Union from collections import OrderedDict from random import shuffle import os from PIL import Image import joblib import numpy as np from rl_coach.agents.agent import Agent from rl_coach.agents.td3_agent import TD3Agent, TD3CriticNetworkParameters, TD3ActorNetworkParameters, \ TD3AlgorithmParameters, TD3AgentExplorationParameters from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.base_parameters import NetworkParameters, AgentParameters, MiddlewareScheme from rl_coach.core_types import Transition, Batch from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.architectures.head_parameters import RNDHeadParameters from rl_coach.utilities.shared_running_stats import NumpySharedRunningStats from rl_coach.logger import screen from rl_coach.exploration_policies.e_greedy import EGreedyParameters from rl_coach.schedules import LinearSchedule class RNDNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='leaky_relu', input_rescaling={'image': 1.0})} self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Empty) self.heads_parameters = [RNDHeadParameters()] self.create_target_network = False self.optimizer_type = 'Adam' self.batch_size = 100 self.learning_rate = 0.0001 self.should_get_softmax_probabilities = False class TD3ExplorationAlgorithmParameters(TD3AlgorithmParameters): """ :param rnd_sample_size: (int) The number of states in each RND training iteration. :param rnd_batch_size: (int) Batch size for the RND optimization cycle. :param rnd_optimization_epochs: (int) Number of epochs for the RND optimization cycle. :param td3_training_ratio: (float) The ratio between TD3 training steps and the number of steps in each episode (must be a positive number). :param identity_goal_sample_rate: (float) For the goal-based agent, this number indicates the probability to sample a goal that is the identity (must be a number between 0 and 1). :param env_obs_key: (str) The name of the state key for the camera observation from the environment. :param agent_obs_key: (str) The name of the state key for the camera observation for the agent. This key has to be different from env_obs_key in case the agent modifies the observation from the environment. For example, the goal-based agent concatenates a goal image to the image observation from the environment. :param replay_buffer_save_steps: (int) The number of steps to periodically save the replay buffer. :param replay_buffer_save_path: (str or None) A path to save the replay buffer to. if set to None, the replay buffer will be saved in the experiment directory. """ def __init__(self): super().__init__() self.rnd_sample_size = 2000 self.rnd_batch_size = 500 self.rnd_optimization_epochs = 4 self.td3_training_ratio = 1.0 self.identity_goal_sample_rate = 0.0 self.env_obs_key = 'camera' self.agent_obs_key = 'camera' self.replay_buffer_save_steps = 25000 self.replay_buffer_save_path = None class TD3ExplorationAgentParameters(AgentParameters): def __init__(self): td3_exp_algorithm_params = TD3ExplorationAlgorithmParameters() super().__init__(algorithm=td3_exp_algorithm_params, exploration=TD3AgentExplorationParameters(), memory=EpisodicExperienceReplayParameters(), networks=OrderedDict([("actor", TD3ActorNetworkParameters()), ("critic", TD3CriticNetworkParameters(td3_exp_algorithm_params.num_q_networks)), ("predictor", RNDNetworkParameters()), ("constant", RNDNetworkParameters())])) @property def path(self): return 'rl_coach.agents.td3_exp_agent:TD3ExplorationAgent' class TD3ExplorationAgent(TD3Agent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.rnd_stats = NumpySharedRunningStats(name='RND_normalization', epsilon=1e-8) self.rnd_stats.set_params() self.rnd_obs_stats = NumpySharedRunningStats(name='RND_observation_normalization', epsilon=1e-8) self.intrinsic_returns_estimate = None def update_intrinsic_returns_estimate(self, rewards): returns = np.zeros_like(rewards) for i, r in enumerate(rewards): if self.intrinsic_returns_estimate is None: self.intrinsic_returns_estimate = r else: self.intrinsic_returns_estimate = \ self.intrinsic_returns_estimate * self.ap.algorithm.discount + r returns[i] = self.intrinsic_returns_estimate return returns def prepare_rnd_inputs(self, batch): env_obs_key = self.ap.algorithm.env_obs_key next_states = batch.next_states([env_obs_key]) inputs = {env_obs_key: self.rnd_obs_stats.normalize(next_states[env_obs_key])} return inputs def handle_self_supervised_reward(self, batch): """ Allows agents to update the batch for self supervised learning :param batch: original training batch :return: updated traing batch """ return batch def update_transition_before_adding_to_replay_buffer(self, transition: Transition) -> Transition: """ Allows agents to update the transition just before adding it to the replay buffer. Can be useful for agents that want to tweak the reward, termination signal, etc. :param transition: the transition to update :return: the updated transition """ transition = super().update_transition_before_adding_to_replay_buffer(transition) image = np.array(transition.state[self.ap.algorithm.env_obs_key]) if self.rnd_obs_stats.n < 1: self.rnd_obs_stats.set_params(shape=image.shape, clip_values=[-5, 5]) self.rnd_obs_stats.push_val(np.expand_dims(image, 0)) return transition def train_rnd(self): if self.memory.num_transitions() == 0: return transitions = self.memory.transitions[-self.ap.algorithm.rnd_sample_size:] dataset = Batch(transitions) dataset_order = list(range(dataset.size)) batch_size = self.ap.algorithm.rnd_batch_size for epoch in range(self.ap.algorithm.rnd_optimization_epochs): shuffle(dataset_order) total_loss = 0 total_grads = 0 for i in range(int(dataset.size / batch_size)): start = i * batch_size end = (i + 1) * batch_size batch = Batch(list(np.array(dataset.transitions)[dataset_order[start:end]])) inputs = self.prepare_rnd_inputs(batch) const_embedding = self.networks['constant'].online_network.predict(inputs) res = self.networks['predictor'].train_and_sync_networks(inputs, [const_embedding]) total_loss += res[0] total_grads += res[2] screen.log_dict( OrderedDict([ ("training epoch", epoch), ("dataset size", dataset.size), ("mean loss", total_loss / dataset.size), ("mean gradients", total_grads / dataset.size) ]), prefix="RND Training" ) def learn_from_batch(self, batch): batch = self.handle_self_supervised_reward(batch) return super().learn_from_batch(batch) def train(self): self.ap.algorithm.num_consecutive_training_steps = \ int(self.current_episode_steps_counter * self.ap.algorithm.td3_training_ratio) return Agent.train(self) def calculate_novelty(self, batch): inputs = self.prepare_rnd_inputs(batch) embedding = self.networks['constant'].online_network.predict(inputs) prediction = self.networks['predictor'].online_network.predict(inputs) prediction_error = np.mean((embedding - prediction) ** 2, axis=1) return prediction_error def save_replay_buffer(self, dir_path=None): if dir_path is None: dir_path = os.path.join(self.parent_level_manager.parent_graph_manager.task_parameters.experiment_path, 'replay_buffer') if not os.path.exists(dir_path): os.mkdir(dir_path) path = os.path.join(dir_path, 'RB_{}.joblib.bz2'.format(type(self).__name__)) joblib.dump(self.memory.get_all_complete_episodes(), path, compress=('bz2', 1)) screen.log('Saved replay buffer to: \"{}\" - Number of transitions: {}'.format(path, self.memory.num_transitions())) def handle_episode_ended(self) -> None: super().handle_episode_ended() if self.total_steps_counter % self.ap.algorithm.rnd_sample_size == 0: self.train_rnd() if self.total_steps_counter % self.ap.algorithm.replay_buffer_save_steps == 0: self.save_replay_buffer(self.ap.algorithm.replay_buffer_save_path) self.save_rnd_images(self.ap.algorithm.replay_buffer_save_path) def save_rnd_images(self, dir_path=None): if dir_path is None: dir_path = os.path.join(self.parent_level_manager.parent_graph_manager.task_parameters.experiment_path, 'rnd_images') else: dir_path = os.path.join(dir_path, 'rnd_images') if not os.path.exists(dir_path): os.mkdir(dir_path) transitions = self.memory.transitions dataset = Batch(transitions) batch_size = self.ap.algorithm.rnd_batch_size novelties = [] for i in range(int(dataset.size / batch_size)): start = i * batch_size end = (i + 1) * batch_size batch = Batch(dataset[start:end]) novelty = self.calculate_novelty(batch) novelties.append(novelty) novelties = np.concatenate(novelties) sorted_indices = np.argsort(novelties) sample_indices = sorted_indices[np.round(np.linspace(0, len(sorted_indices) - 1, 100)).astype(np.uint32)] images = [] for si in sample_indices: images.append(np.flip(transitions[si].next_state[self.ap.algorithm.env_obs_key], 0)) rows = [] for i in range(10): rows.append(np.hstack(images[(i * 10):((i + 1) * 10)])) image = np.vstack(rows) image = Image.fromarray(image) image.save('{}/{}_{}.jpeg'.format(dir_path, 'rnd_samples', len(transitions))) class TD3IntrinsicRewardAgentParameters(TD3ExplorationAgentParameters): @property def path(self): return 'rl_coach.agents.td3_exp_agent:TD3IntrinsicRewardAgent' class TD3IntrinsicRewardAgent(TD3ExplorationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) def handle_self_supervised_reward(self, batch): novelty = self.calculate_novelty(batch) for i, t in enumerate(batch.transitions): t.reward = novelty[i] / self.rnd_stats.std[0] return batch def handle_episode_ended(self) -> None: super().handle_episode_ended() novelty = self.calculate_novelty(Batch(self.memory.get_last_complete_episode().transitions)) self.rnd_stats.push_val(np.expand_dims(self.update_intrinsic_returns_estimate(novelty), -1)) class RandomAgentParameters(TD3ExplorationAgentParameters): def __init__(self): super().__init__() self.exploration = EGreedyParameters() self.exploration.epsilon_schedule = LinearSchedule(1.0, 1.0, 500000000) @property def path(self): return 'rl_coach.agents.td3_exp_agent:RandomAgent' class RandomAgent(TD3ExplorationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.ap.algorithm.periodic_exploration_noise = None self.ap.algorithm.rnd_sample_size = 100000000000 def train(self): return 0 class TD3GoalBasedAgentParameters(TD3ExplorationAgentParameters): @property def path(self): return 'rl_coach.agents.td3_exp_agent:TD3GoalBasedAgent' class TD3GoalBasedAgent(TD3ExplorationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.goal = None self.ap.algorithm.use_non_zero_discount_for_terminal_states = False def concat_goal(self, state, goal_state): ret = np.concatenate([state[self.ap.algorithm.env_obs_key], goal_state[self.ap.algorithm.env_obs_key]], axis=2) return ret def handle_self_supervised_reward(self, batch): batch_size = self.ap.network_wrappers['actor'].batch_size episode_indices = np.random.randint(self.memory.num_complete_episodes(), size=batch_size) transitions = [] for e_idx in episode_indices: episode = self.memory.get_all_complete_episodes()[e_idx] transition_idx = np.random.randint(episode.length()) t = copy.copy(episode[transition_idx]) if np.random.rand(1) < self.ap.algorithm.identity_goal_sample_rate: t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, t.state) # this doesn't matter for learning but is set anyway so that the agent can pass it through the network t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state, t.state) t.game_over = True t.reward = 0 t.action = np.zeros_like(t.action) else: if transition_idx == episode.length() - 1: goal = t t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, t.next_state) t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state, t.next_state) else: goal_idx = np.random.randint(transition_idx, episode.length()) goal = episode.transitions[goal_idx] t.state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.state, episode.transitions[goal_idx].next_state) t.next_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(t.next_state, episode.transitions[goal_idx].next_state) camera_equal = np.alltrue(np.equal(t.next_state[self.ap.algorithm.env_obs_key], goal.next_state[self.ap.algorithm.env_obs_key])) measurements_equal = np.alltrue(np.isclose(t.next_state['measurements'], goal.next_state['measurements'])) t.game_over = camera_equal and measurements_equal t.reward = -1 transitions.append(t) return Batch(transitions) def choose_action(self, curr_state): if self.goal: curr_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(curr_state, self.goal.next_state) else: curr_state[self.ap.algorithm.agent_obs_key] = self.concat_goal(curr_state, curr_state) return super().choose_action(curr_state) def generate_goal(self): if self.memory.num_transitions() == 0: return transitions = list(np.random.choice(self.memory.transitions, min(self.ap.algorithm.rnd_sample_size, self.memory.num_transitions()), replace=False)) dataset = Batch(transitions) batch_size = self.ap.algorithm.rnd_batch_size self.goal = dataset[0] max_novelty = 0 for i in range(int(dataset.size / batch_size)): start = i * batch_size end = (i + 1) * batch_size novelty = self.calculate_novelty(Batch(dataset[start:end])) curr_max = np.max(novelty) if curr_max > max_novelty: max_novelty = curr_max idx = start + np.argmax(novelty) self.goal = dataset[idx] def handle_episode_ended(self) -> None: super().handle_episode_ended() self.generate_goal()