# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from agents.agent import * from memories.memory import Episode class PolicyGradientRescaler(Enum): TOTAL_RETURN = 0 FUTURE_RETURN = 1 FUTURE_RETURN_NORMALIZED_BY_EPISODE = 2 FUTURE_RETURN_NORMALIZED_BY_TIMESTEP = 3 # baselined Q_VALUE = 4 A_VALUE = 5 TD_RESIDUAL = 6 DISCOUNTED_TD_RESIDUAL = 7 GAE = 8 class PolicyOptimizationAgent(Agent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0, create_target_network=False): Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id) self.main_network = NetworkWrapper(tuning_parameters, create_target_network, self.has_global, 'main', self.replicated_device, self.worker_device) self.networks.append(self.main_network) self.policy_gradient_rescaler = PolicyGradientRescaler().get(self.tp.agent.policy_gradient_rescaler) # statistics for variance reduction self.last_gradient_update_step_idx = 0 self.max_episode_length = 100000 self.mean_return_over_multiple_episodes = np.zeros(self.max_episode_length) self.num_episodes_where_step_has_been_seen = np.zeros(self.max_episode_length) self.entropy = Signal('Entropy') self.signals.append(self.entropy) def log_to_screen(self, phase): # log to screen if self.current_episode > 0: screen.log_dict( OrderedDict([ ("Worker", self.task_id), ("Episode", self.current_episode), ("total reward", self.total_reward_in_current_episode), ("steps", self.total_steps_counter), ("training iteration", self.training_iteration) ]), prefix=phase ) def update_episode_statistics(self, episode): episode_discounted_returns = [] for i in range(episode.length()): transition = episode.get_transition(i) episode_discounted_returns.append(transition.total_return) self.num_episodes_where_step_has_been_seen[i] += 1 self.mean_return_over_multiple_episodes[i] -= self.mean_return_over_multiple_episodes[i] / \ self.num_episodes_where_step_has_been_seen[i] self.mean_return_over_multiple_episodes[i] += transition.total_return / \ self.num_episodes_where_step_has_been_seen[i] self.mean_discounted_return = np.mean(episode_discounted_returns) self.std_discounted_return = np.std(episode_discounted_returns) def train(self): if self.memory.length() == 0: return 0 episode = self.memory.get_episode(0) # check if we should calculate gradients or skip episode_ended = self.memory.num_complete_episodes() >= 1 num_steps_passed_since_last_update = episode.length() - self.last_gradient_update_step_idx is_t_max_steps_passed = num_steps_passed_since_last_update >= self.tp.agent.num_steps_between_gradient_updates if not (is_t_max_steps_passed or episode_ended): return 0 total_loss = 0 if num_steps_passed_since_last_update > 0: # we need to update the returns of the episode until now episode.update_returns(self.tp.agent.discount) # get t_max transitions or less if the we got to a terminal state # will be used for both actor-critic and vanilla PG. # # In order to get full episodes, Vanilla PG will set the end_idx to a very big value. transitions = [] start_idx = self.last_gradient_update_step_idx end_idx = episode.length() for idx in range(start_idx, end_idx): transitions.append(episode.get_transition(idx)) self.last_gradient_update_step_idx = end_idx # update the statistics for the variance reduction techniques if self.tp.agent.type == 'PolicyGradientsAgent': self.update_episode_statistics(episode) # accumulate the gradients and apply them once in every apply_gradients_every_x_episodes episodes total_loss = self.learn_from_batch(transitions) if self.current_episode % self.tp.agent.apply_gradients_every_x_episodes == 0: self.main_network.apply_gradients_and_sync_networks() # move the pointer to the next episode start and discard the episode. we use it only once if episode_ended: self.memory.remove_episode(0) self.last_gradient_update_step_idx = 0 return total_loss