from rl_coach.agents.dfp_agent import DFPAgentParameters from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, MiddlewareScheme, \ PresetValidationParameters from rl_coach.core_types import EnvironmentSteps, RunPhase, EnvironmentEpisodes from rl_coach.environments.doom_environment import DoomEnvironmentParameters from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod, MaxDumpMethod from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentSteps(6250000) # original paper evaluates according to these. But, this preset converges significantly faster - can be evaluated # much often. # schedule_params.steps_between_evaluation_periods = EnvironmentSteps(62500) # schedule_params.evaluation_steps = EnvironmentSteps(6250) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(5) schedule_params.evaluation_steps = EnvironmentEpisodes(1) # There is no heatup for DFP. heatup length is determined according to batch size. See below. ######### # Agent # ######### agent_params = DFPAgentParameters() schedule_params.heatup_steps = EnvironmentSteps(agent_params.network_wrappers['main'].batch_size) agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0, 10000) agent_params.exploration.evaluation_epsilon = 0 agent_params.algorithm.goal_vector = [1] # health # this works better than the default which is set to 8 (while running with 8 workers) agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) # scale observation and measurements to be -0.5 <-> 0.5 agent_params.network_wrappers['main'].input_embedders_parameters['measurements'].input_rescaling['vector'] = 100. agent_params.network_wrappers['main'].input_embedders_parameters['measurements'].input_offset['vector'] = 0.5 agent_params.network_wrappers['main'].input_embedders_parameters['observation'].input_offset['vector'] = 0.5 # changing the network scheme to match Coach's default network, as it performs better on this preset agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium agent_params.network_wrappers['main'].input_embedders_parameters['measurements'].scheme = EmbedderScheme.Medium agent_params.network_wrappers['main'].input_embedders_parameters['goal'].scheme = EmbedderScheme.Medium agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Medium # scale the target measurements according to the paper (dividing by standard deviation) agent_params.algorithm.scale_measurements_targets['GameVariable.HEALTH'] = 30.0 ############### # Environment # ############### env_params = DoomEnvironmentParameters() env_params.level = 'HEALTH_GATHERING' vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True # reward threshold was set to 1000 since otherwise the test takes about an hour preset_validation_params.min_reward_threshold = 1000 preset_validation_params.max_episodes_to_achieve_reward = 70 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)