# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from enum import Enum from typing import Union import numpy as np from rl_coach.core_types import Batch, ActionInfo from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace from rl_coach.utils import eps from rl_coach.agents.agent import Agent from rl_coach.logger import screen class PolicyGradientRescaler(Enum): TOTAL_RETURN = 0 FUTURE_RETURN = 1 FUTURE_RETURN_NORMALIZED_BY_EPISODE = 2 FUTURE_RETURN_NORMALIZED_BY_TIMESTEP = 3 # baselined Q_VALUE = 4 A_VALUE = 5 TD_RESIDUAL = 6 DISCOUNTED_TD_RESIDUAL = 7 GAE = 8 ## This is an abstract agent - there is no learn_from_batch method ## class PolicyOptimizationAgent(Agent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.policy_gradient_rescaler = None if hasattr(self.ap.algorithm, 'policy_gradient_rescaler'): self.policy_gradient_rescaler = self.ap.algorithm.policy_gradient_rescaler # statistics for variance reduction self.last_gradient_update_step_idx = 0 self.max_episode_length = 100000 self.mean_return_over_multiple_episodes = np.zeros(self.max_episode_length) self.num_episodes_where_step_has_been_seen = np.zeros(self.max_episode_length) self.entropy = self.register_signal('Entropy') def log_to_screen(self): # log to screen log = OrderedDict() log["Name"] = self.full_name_id if self.task_id is not None: log["Worker"] = self.task_id log["Episode"] = self.current_episode log["Total reward"] = round(self.total_reward_in_current_episode, 2) log["Steps"] = self.total_steps_counter log["Training iteration"] = self.training_iteration screen.log_dict(log, prefix=self.phase.value) def update_episode_statistics(self, episode): episode_discounted_returns = [] for i in range(episode.length()): transition = episode.get_transition(i) episode_discounted_returns.append(transition.total_return) self.num_episodes_where_step_has_been_seen[i] += 1 self.mean_return_over_multiple_episodes[i] -= self.mean_return_over_multiple_episodes[i] / \ self.num_episodes_where_step_has_been_seen[i] self.mean_return_over_multiple_episodes[i] += transition.total_return / \ self.num_episodes_where_step_has_been_seen[i] self.mean_discounted_return = np.mean(episode_discounted_returns) self.std_discounted_return = np.std(episode_discounted_returns) def get_current_episode(self): # we get the episode most of the time from the current episode buffer and only in the last transition from the # "memory" (where is was stored in the end of the episode) return self.memory.get_episode(0) or self.current_episode_buffer def train(self): episode = self.get_current_episode() # check if we should calculate gradients or skip episode_ended = episode.is_complete num_steps_passed_since_last_update = episode.length() - self.last_gradient_update_step_idx is_t_max_steps_passed = num_steps_passed_since_last_update >= self.ap.algorithm.num_steps_between_gradient_updates if not (is_t_max_steps_passed or episode_ended): return 0 total_loss = 0 if num_steps_passed_since_last_update > 0: # we need to update the returns of the episode until now episode.update_returns() # get t_max transitions or less if the we got to a terminal state # will be used for both actor-critic and vanilla PG. # # In order to get full episodes, Vanilla PG will set the end_idx to a very big value. transitions = [] start_idx = self.last_gradient_update_step_idx end_idx = episode.length() for idx in range(start_idx, end_idx): transitions.append(episode.get_transition(idx)) self.last_gradient_update_step_idx = end_idx # update the statistics for the variance reduction techniques if self.policy_gradient_rescaler in \ [PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_EPISODE, PolicyGradientRescaler.FUTURE_RETURN_NORMALIZED_BY_TIMESTEP]: self.update_episode_statistics(episode) # accumulate the gradients and apply them once in every apply_gradients_every_x_episodes episodes batch = Batch(transitions) total_loss, losses, unclipped_grads = self.learn_from_batch(batch) if self.current_episode % self.ap.algorithm.apply_gradients_every_x_episodes == 0: for network in self.networks.values(): network.apply_gradients_and_sync_networks() self.training_iteration += 1 # move the pointer to the next episode start and discard the episode. if episode_ended: # we need to remove the episode, because the next training iteration will be called before storing any # additional transitions in the memory (we don't store a transition for the first call to observe), so the # length of the memory won't be enforced and the old episode won't be removed self.call_memory('remove_episode', 0) self.last_gradient_update_step_idx = 0 return total_loss def learn_from_batch(self, batch): raise NotImplementedError("PolicyOptimizationAgent is an abstract agent. Not to be used directly.") def get_prediction(self, states): tf_input_state = self.prepare_batch_for_inference(states, "main") return self.networks['main'].online_network.predict(tf_input_state) def choose_action(self, curr_state): # convert to batch so we can run it through the network action_values = self.get_prediction(curr_state) if isinstance(self.spaces.action, DiscreteActionSpace): # DISCRETE action_probabilities = np.array(action_values).squeeze() action = self.exploration_policy.get_action(action_probabilities) action_info = ActionInfo(action=action, action_probability=action_probabilities[action]) self.entropy.add_sample(-np.sum(action_probabilities * np.log(action_probabilities + eps))) elif isinstance(self.spaces.action, BoxActionSpace): # CONTINUOUS action = self.exploration_policy.get_action(action_values) action_info = ActionInfo(action=action) else: raise ValueError("The action space of the environment is not compatible with the algorithm") return action_info