# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from rl_coach.base_parameters import AgentParameters from rl_coach.spaces import SpacesDefinition class Architecture(object): def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, name: str= ""): """ :param agent_parameters: the agent parameters :param spaces: the spaces (observation, action, etc.) definition of the agent :param name: the name of the network """ # spaces self.spaces = spaces self.name = name self.network_wrapper_name = self.name.split('/')[0] # the name can be main/online and the network_wrapper_name will be main self.full_name = "{}/{}".format(agent_parameters.full_name_id, name) self.network_parameters = agent_parameters.network_wrappers[self.network_wrapper_name] self.batch_size = self.network_parameters.batch_size self.learning_rate = self.network_parameters.learning_rate self.optimizer = None self.ap = agent_parameters def get_model(self): pass def predict(self, inputs): pass def train_on_batch(self, inputs, targets): pass def get_weights(self): pass def set_weights(self, weights, rate=1.0): pass def reset_accumulated_gradients(self): pass def accumulate_gradients(self, inputs, targets): pass def apply_and_reset_gradients(self, gradients): pass def apply_gradients(self, gradients): pass def get_variable_value(self, variable): pass def set_variable_value(self, assign_op, value, placeholder=None): pass