# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.ddpg_agent import DDPGAgent, DDPGAgentParameters, DDPGAlgorithmParameters from rl_coach.core_types import RunPhase from rl_coach.spaces import SpacesDefinition class HACDDPGAlgorithmParameters(DDPGAlgorithmParameters): def __init__(self): super().__init__() self.time_limit = 40 self.sub_goal_testing_rate = 0.5 class HACDDPGAgentParameters(DDPGAgentParameters): def __init__(self): super().__init__() self.algorithm = HACDDPGAlgorithmParameters() @property def path(self): return 'rl_coach.agents.hac_ddpg_agent:HACDDPGAgent' # Hierarchical Actor Critic Generating Subgoals DDPG Agent - https://arxiv.org/pdf/1712.00948.pdf class HACDDPGAgent(DDPGAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.sub_goal_testing_rate = self.ap.algorithm.sub_goal_testing_rate self.graph_manager = None def choose_action(self, curr_state): # top level decides, for each of his generated sub-goals, for all the layers beneath him if this is a sub-goal # testing phase graph_manager = self.parent_level_manager.parent_graph_manager if self.ap.is_a_highest_level_agent: graph_manager.should_test_current_sub_goal = np.random.rand() < self.sub_goal_testing_rate if self.phase == RunPhase.TRAIN: if graph_manager.should_test_current_sub_goal: self.exploration_policy.change_phase(RunPhase.TEST) else: self.exploration_policy.change_phase(self.phase) action_info = super().choose_action(curr_state) return action_info def update_transition_before_adding_to_replay_buffer(self, transition): graph_manager = self.parent_level_manager.parent_graph_manager # deal with goals given from a higher level agent if not self.ap.is_a_highest_level_agent: transition.state['desired_goal'] = self.current_hrl_goal transition.next_state['desired_goal'] = self.current_hrl_goal # TODO: allow setting goals which are not part of the state. e.g. state-embedding using get_prediction self.distance_from_goal.add_sample(self.spaces.goal.distance_from_goal( self.current_hrl_goal, transition.next_state)) goal_reward, sub_goal_reached = self.spaces.goal.get_reward_for_goal_and_state( self.current_hrl_goal, transition.next_state) transition.reward = goal_reward transition.game_over = transition.game_over or sub_goal_reached # each level tests its own generated sub goals if not self.ap.is_a_lowest_level_agent and graph_manager.should_test_current_sub_goal: #TODO-fixme # _, sub_goal_reached = self.parent_level_manager.environment.agents['agent_1'].spaces.goal.\ # get_reward_for_goal_and_state(transition.action, transition.next_state) _, sub_goal_reached = self.spaces.goal.get_reward_for_goal_and_state( transition.action, transition.next_state) sub_goal_is_missed = not sub_goal_reached if sub_goal_is_missed: transition.reward = -self.ap.algorithm.time_limit return transition def set_environment_parameters(self, spaces: SpacesDefinition): super().set_environment_parameters(spaces) if self.ap.is_a_highest_level_agent: # the rest of the levels already have an in_action_space set to be of type GoalsSpace, thus they will have # their GoalsSpace set to the in_action_space in agent.set_environment_parameters() self.spaces.goal = self.spaces.action self.spaces.goal.set_target_space(self.spaces.state[self.spaces.goal.goal_name]) if not self.ap.is_a_highest_level_agent: self.spaces.reward.reward_success_threshold = self.spaces.goal.reward_type.goal_reaching_reward