# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from collections import OrderedDict from typing import Union import pygame from pandas import to_pickle from rl_coach.agents.agent import Agent from rl_coach.agents.bc_agent import BCNetworkParameters from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, EmbedderScheme, \ AgentParameters from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters from rl_coach.core_types import ActionInfo from rl_coach.exploration_policies.e_greedy import EGreedyParameters from rl_coach.logger import screen from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters class HumanAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() class HumanNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.input_embedders_parameters['observation'].scheme = EmbedderScheme.Medium self.middleware_parameters = FCMiddlewareParameters() self.heads_parameters = [PolicyHeadParameters()] self.loss_weights = [1.0] self.optimizer_type = 'Adam' self.batch_size = 32 self.replace_mse_with_huber_loss = False self.create_target_network = False class HumanAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=HumanAlgorithmParameters(), exploration=EGreedyParameters(), memory=EpisodicExperienceReplayParameters(), networks={"main": BCNetworkParameters()}) @property def path(self): return 'rl_coach.agents.human_agent:HumanAgent' class HumanAgent(Agent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.clock = pygame.time.Clock() self.max_fps = int(self.ap.visualization.max_fps_for_human_control) self.env = None def init_environment_dependent_modules(self): super().init_environment_dependent_modules() self.env = self.parent_level_manager._real_environment screen.log_title("Human Control Mode") available_keys = self.env.get_available_keys() if available_keys: screen.log("Use keyboard keys to move. Press escape to quit. Available keys:") screen.log("") for action, key in self.env.get_available_keys(): screen.log("\t- {}: {}".format(action, key)) screen.separator() def train(self): return 0 def choose_action(self, curr_state): action = ActionInfo(self.env.get_action_from_user(), action_value=0) action = self.output_filter.reverse_filter(action) # keep constant fps self.clock.tick(self.max_fps) if not self.env.renderer.is_open: self.save_replay_buffer_and_exit() return action def save_replay_buffer_and_exit(self): replay_buffer_path = os.path.join(self.agent_logger.experiments_path, 'replay_buffer.p') self.memory.tp = None to_pickle(self.memory, replay_buffer_path) screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path)) exit() def log_to_screen(self): # log to screen log = OrderedDict() log["Episode"] = self.current_episode log["Total reward"] = round(self.total_reward_in_current_episode, 2) log["Steps"] = self.total_steps_counter screen.log_dict(log, prefix="Recording")