from rl_coach.agents.dqn_agent import DQNAgentParameters from rl_coach.architectures.tensorflow_components.architecture import Dense from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, \ PresetValidationParameters from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import Mujoco from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import ConstantSchedule bit_length = 8 #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(400000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(16 * 50) # 50 cycles schedule_params.evaluation_steps = EnvironmentEpisodes(10) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = DQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.001 agent_params.network_wrappers['main'].batch_size = 128 agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([256])] agent_params.network_wrappers['main'].input_embedders_parameters = { 'state': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty) } agent_params.algorithm.discount = 0.98 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(16) agent_params.algorithm.num_consecutive_training_steps = 40 agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40) agent_params.algorithm.rate_for_copying_weights_to_target = 0.05 agent_params.memory.max_size = (MemoryGranularity.Transitions, 10**6) agent_params.exploration.epsilon_schedule = ConstantSchedule(0.2) agent_params.exploration.evaluation_epsilon = 0 ############### # Environment # ############### env_params = Mujoco() env_params.level = 'rl_coach.environments.toy_problems.bit_flip:BitFlip' env_params.additional_simulator_parameters = {'bit_length': bit_length, 'mean_zero': True} # env_params.custom_reward_threshold = -bit_length + 1 vis_params = VisualizationParameters() ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = -7.9 preset_validation_params.max_episodes_to_achieve_reward = 10000 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params) # self.algorithm.add_intrinsic_reward_for_reaching_the_goal = False