from rl_coach.agents.ddpg_agent import DDPGAgentParameters from rl_coach.architectures.tensorflow_components.architecture import Dense from rl_coach.base_parameters import VisualizationParameters, EmbedderScheme, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.environments.control_suite_environment import ControlSuiteEnvironmentParameters, control_suite_envs from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection from rl_coach.environments.gym_environment import MujocoInputFilter from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = DDPGAgentParameters() agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'] = \ agent_params.network_wrappers['actor'].input_embedders_parameters.pop('observation') agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'] = \ agent_params.network_wrappers['critic'].input_embedders_parameters.pop('observation') agent_params.network_wrappers['actor'].input_embedders_parameters['measurements'].scheme = [Dense([300])] agent_params.network_wrappers['actor'].middleware_parameters.scheme = [Dense([200])] agent_params.network_wrappers['critic'].input_embedders_parameters['measurements'].scheme = [Dense([400])] agent_params.network_wrappers['critic'].middleware_parameters.scheme = [Dense([300])] agent_params.network_wrappers['critic'].input_embedders_parameters['action'].scheme = EmbedderScheme.Empty agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_reward_filter("rescale", RewardRescaleFilter(1/10.)) ############### # Environment # ############### env_params = ControlSuiteEnvironmentParameters() env_params.level = SingleLevelSelection(control_suite_envs) vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['cartpole:swingup', 'hopper:hop'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)