from rl_coach.agents.actor_critic_agent import ActorCriticAgentParameters from rl_coach.architectures.tensorflow_components.architecture import Dense from rl_coach.architectures.tensorflow_components.middlewares.lstm_middleware import LSTMMiddlewareParameters from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection from rl_coach.environments.gym_environment import Mujoco, mujoco_v2, MujocoInputFilter from rl_coach.exploration_policies.continuous_entropy import ContinuousEntropyParameters from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = ActorCriticAgentParameters() agent_params.algorithm.apply_gradients_every_x_episodes = 1 agent_params.algorithm.num_steps_between_gradient_updates = 20 agent_params.algorithm.beta_entropy = 0.005 agent_params.network_wrappers['main'].learning_rate = 0.00002 agent_params.network_wrappers['main'].input_embedders_parameters['observation'] = \ InputEmbedderParameters(scheme=[Dense([200])]) agent_params.network_wrappers['main'].middleware_parameters = LSTMMiddlewareParameters(scheme=MiddlewareScheme.Empty, number_of_lstm_cells=128) agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/20.)) agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter()) agent_params.exploration = ContinuousEntropyParameters() ############### # Environment # ############### env_params = Mujoco() env_params.level = SingleLevelSelection(mujoco_v2) vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 1000 preset_validation_params.num_workers = 8 preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)