# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import collections import os import pygame from pandas.io import pickle from agents import agent import logger import utils class HumanAgent(agent.Agent): def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0): agent.Agent.__init__(self, env, tuning_parameters, replicated_device, thread_id) self.clock = pygame.time.Clock() self.max_fps = int(self.tp.visualization.max_fps_for_human_control) utils.screen.log_title("Human Control Mode") available_keys = self.env.get_available_keys() if available_keys: utils.screen.log("Use keyboard keys to move. Press escape to quit. Available keys:") utils.screen.log("") for action, key in self.env.get_available_keys(): utils.screen.log("\t- {}: {}".format(action, key)) utils.screen.separator() def train(self): return 0 def choose_action(self, curr_state, phase=utils.RunPhase.TRAIN): action = self.env.get_action_from_user() # keep constant fps self.clock.tick(self.max_fps) if not self.env.renderer.is_open: self.save_replay_buffer_and_exit() return action, {"action_value": 0} def save_replay_buffer_and_exit(self): replay_buffer_path = os.path.join(logger.logger.experiments_path, 'replay_buffer.p') self.memory.tp = None pickle.to_pickle(self.memory, replay_buffer_path) utils.screen.log_title("Replay buffer was stored in {}".format(replay_buffer_path)) exit() def log_to_screen(self, phase): # log to utils.screen utils.screen.log_dict( collections.OrderedDict([ ("Episode", self.current_episode), ("total reward", self.total_reward_in_current_episode), ("steps", self.total_steps_counter) ]), prefix="Recording" )