# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ngraph as ng import numpy as np from architectures import architecture import utils class NeonArchitecture(architecture.Architecture): def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True): architecture.Architecture.__init__(self, tuning_parameters, name) assert tuning_parameters.agent.neon_support, 'Neon is not supported for this agent' self.clip_error = tuning_parameters.clip_gradients self.total_loss = None self.epoch = 0 self.inputs = [] self.outputs = [] self.targets = [] self.losses = [] self.transformer = tuning_parameters.sess self.network = self.get_model(tuning_parameters) self.accumulated_gradients = [] # training and inference ops train_output = ng.sequential([ self.optimizer(self.total_loss), self.total_loss ]) placeholders = self.inputs + self.targets self.train_op = self.transformer.add_computation( ng.computation( train_output, *placeholders ) ) self.predict_op = self.transformer.add_computation( ng.computation( self.outputs, self.inputs[0] ) ) # update weights from array op self.weights = [ng.placeholder(w.axes) for w in self.total_loss.variables()] self.set_weights_ops = [] for target_variable, variable in zip(self.total_loss.variables(), self.weights): self.set_weights_ops.append(self.transformer.add_computation( ng.computation( ng.assign(target_variable, variable), variable ) )) # get weights op self.get_variables = self.transformer.add_computation( ng.computation( self.total_loss.variables() ) ) def predict(self, inputs): batch_size = inputs.shape[0] # move batch axis to the end inputs = inputs.swapaxes(0, -1) prediction = self.predict_op(inputs) # TODO: problem with multiple inputs if type(prediction) != tuple: prediction = (prediction) # process all the outputs from the network output = [] for p in prediction: output.append(p.transpose()[:batch_size].copy()) # if there is only one output then we don't need a list if len(output) == 1: output = output[0] return output def train_on_batch(self, inputs, targets): loss = self.accumulate_gradients(inputs, targets) self.apply_and_reset_gradients(self.accumulated_gradients) return loss def get_weights(self): return self.get_variables() def set_weights(self, weights, rate=1.0): if rate != 1: current_weights = self.get_weights() updated_weights = [(1 - rate) * t + rate * o for t, o in zip(current_weights, weights)] else: updated_weights = weights for update_function, variable in zip(self.set_weights_ops, updated_weights): update_function(variable) def accumulate_gradients(self, inputs, targets): # Neon doesn't currently allow separating the grads calculation and grad apply operations # so this feature is not currently available. instead we do a full training iteration inputs = utils.force_list(inputs) targets = utils.force_list(targets) for idx, input in enumerate(inputs): inputs[idx] = input.swapaxes(0, -1) for idx, target in enumerate(targets): targets[idx] = np.rollaxis(target, 0, len(target.shape)) all_inputs = inputs + targets loss = np.mean(self.train_op(*all_inputs)) return [loss]