# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from exploration_policies.exploration_policy import * class Boltzmann(ExplorationPolicy): def __init__(self, tuning_parameters): """ :param tuning_parameters: A Preset class instance with all the running paramaters :type tuning_parameters: Preset """ ExplorationPolicy.__init__(self, tuning_parameters) self.temperature = tuning_parameters.exploration.initial_temperature self.final_temperature = tuning_parameters.exploration.final_temperature self.temperature_decay_delta = ( tuning_parameters.exploration.initial_temperature - tuning_parameters.exploration.final_temperature) \ / float(tuning_parameters.exploration.temperature_decay_steps) def decay_temperature(self): if self.temperature > self.final_temperature: self.temperature -= self.temperature_decay_delta def get_action(self, action_values): if self.phase == RunPhase.TRAIN: self.decay_temperature() # softmax calculation exp_probabilities = np.exp(action_values / self.temperature) probabilities = exp_probabilities / np.sum(exp_probabilities) probabilities[-1] = 1 - np.sum(probabilities[:-1]) # make sure probs sum to 1 # choose actions according to the probabilities return np.random.choice(range(self.action_space_size), p=probabilities) def get_control_param(self): return self.temperature