# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAlgorithmParameters from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent from rl_coach.architectures.tensorflow_components.heads.categorical_q_head import CategoricalQHeadParameters from rl_coach.base_parameters import AgentParameters from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters from rl_coach.schedules import LinearSchedule from rl_coach.core_types import StateType from rl_coach.exploration_policies.e_greedy import EGreedyParameters class CategoricalDQNNetworkParameters(DQNNetworkParameters): def __init__(self): super().__init__() self.heads_parameters = [CategoricalQHeadParameters()] class CategoricalDQNAlgorithmParameters(DQNAlgorithmParameters): def __init__(self): super().__init__() self.v_min = -10.0 self.v_max = 10.0 self.atoms = 51 class CategoricalDQNExplorationParameters(EGreedyParameters): def __init__(self): super().__init__() self.epsilon_schedule = LinearSchedule(1, 0.01, 1000000) self.evaluation_epsilon = 0.001 class CategoricalDQNAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=CategoricalDQNAlgorithmParameters(), exploration=CategoricalDQNExplorationParameters(), memory=ExperienceReplayParameters(), networks={"main": CategoricalDQNNetworkParameters()}) @property def path(self): return 'rl_coach.agents.categorical_dqn_agent:CategoricalDQNAgent' # Categorical Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf class CategoricalDQNAgent(ValueOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.z_values = np.linspace(self.ap.algorithm.v_min, self.ap.algorithm.v_max, self.ap.algorithm.atoms) def distribution_prediction_to_q_values(self, prediction): return np.dot(prediction, self.z_values) # prediction's format is (batch,actions,atoms) def get_all_q_values_for_states(self, states: StateType): if self.exploration_policy.requires_action_values(): prediction = self.get_prediction(states) q_values = self.distribution_prediction_to_q_values(prediction) else: q_values = None return q_values def learn_from_batch(self, batch): network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # for the action we actually took, the error is calculated by the atoms distribution # for all other actions, the error is 0 distributed_q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([ (self.networks['main'].target_network, batch.next_states(network_keys)), (self.networks['main'].online_network, batch.states(network_keys)) ]) # only update the action that we have actually done in this transition target_actions = np.argmax(self.distribution_prediction_to_q_values(distributed_q_st_plus_1), axis=1) m = np.zeros((self.ap.network_wrappers['main'].batch_size, self.z_values.size)) batches = np.arange(self.ap.network_wrappers['main'].batch_size) for j in range(self.z_values.size): tzj = np.fmax(np.fmin(batch.rewards() + (1.0 - batch.game_overs()) * self.ap.algorithm.discount * self.z_values[j], self.z_values[self.z_values.size - 1]), self.z_values[0]) bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0]) u = (np.ceil(bj)).astype(int) l = (np.floor(bj)).astype(int) m[batches, l] = m[batches, l] + (distributed_q_st_plus_1[batches, target_actions, j] * (u - bj)) m[batches, u] = m[batches, u] + (distributed_q_st_plus_1[batches, target_actions, j] * (bj - l)) # total_loss = cross entropy between actual result above and predicted result for the given action TD_targets[batches, batch.actions()] = m result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets) total_loss, losses, unclipped_grads = result[:3] return total_loss, losses, unclipped_grads