# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List import numpy as np from rl_coach.schedules import Schedule, LinearSchedule from scipy.stats import truncnorm from rl_coach.spaces import ActionSpace, BoxActionSpace from rl_coach.core_types import RunPhase, ActionType from rl_coach.exploration_policies.exploration_policy import ExplorationPolicy, ExplorationParameters class TruncatedNormalParameters(ExplorationParameters): def __init__(self): super().__init__() self.noise_percentage_schedule = LinearSchedule(0.1, 0.1, 50000) self.evaluation_noise_percentage = 0.05 self.clip_low = 0 self.clip_high = 1 @property def path(self): return 'rl_coach.exploration_policies.truncated_normal:TruncatedNormal' class TruncatedNormal(ExplorationPolicy): def __init__(self, action_space: ActionSpace, noise_percentage_schedule: Schedule, evaluation_noise_percentage: float, clip_low: float, clip_high: float): """ :param action_space: the action space used by the environment :param noise_percentage_schedule: the schedule for the noise variance percentage relative to the absolute range of the action space :param evaluation_noise_percentage: the noise variance percentage that will be used during evaluation phases """ super().__init__(action_space) self.noise_percentage_schedule = noise_percentage_schedule self.evaluation_noise_percentage = evaluation_noise_percentage self.clip_low = clip_low self.clip_high = clip_high if not isinstance(action_space, BoxActionSpace): raise ValueError("Truncated normal exploration works only for continuous controls." "The given action space is of type: {}".format(action_space.__class__.__name__)) if not np.all(-np.inf < action_space.high) or not np.all(action_space.high < np.inf)\ or not np.all(-np.inf < action_space.low) or not np.all(action_space.low < np.inf): raise ValueError("Additive noise exploration requires bounded actions") # TODO: allow working with unbounded actions by defining the noise in terms of range and not percentage def get_action(self, action_values: List[ActionType]) -> ActionType: # set the current noise percentage if self.phase == RunPhase.TEST: current_noise_precentage = self.evaluation_noise_percentage else: current_noise_precentage = self.noise_percentage_schedule.current_value # scale the noise to the action space range action_values_std = current_noise_precentage * (self.action_space.high - self.action_space.low) # extract the mean values if isinstance(action_values, list): # the action values are expected to be a list with the action mean and optionally the action stdev action_values_mean = action_values[0].squeeze() else: # the action values are expected to be a numpy array representing the action mean action_values_mean = action_values.squeeze() # step the noise schedule if self.phase == RunPhase.TRAIN: self.noise_percentage_schedule.step() # the second element of the list is assumed to be the standard deviation if isinstance(action_values, list) and len(action_values) > 1: action_values_std = action_values[1].squeeze() # sample from truncated normal distribution normalized_low = (self.clip_low - action_values_mean) / action_values_std normalized_high = (self.clip_high - action_values_mean) / action_values_std distribution = truncnorm(normalized_low, normalized_high, loc=action_values_mean, scale=action_values_std) action = distribution.rvs(1) return action def get_control_param(self): return np.ones(self.action_space.shape)*self.noise_percentage_schedule.current_value