import math from rl_coach.architectures.tensorflow_components.heads.dueling_q_head import DuelingQHeadParameters from rl_coach.base_parameters import VisualizationParameters, MiddlewareScheme, PresetValidationParameters from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4 from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.core_types import EnvironmentSteps, RunPhase #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentSteps(50000000) schedule_params.steps_between_evaluation_periods = EnvironmentSteps(250000) schedule_params.evaluation_steps = EnvironmentSteps(135000) schedule_params.heatup_steps = EnvironmentSteps(50000) ######### # Agent # ######### agent_params = DDQNAgentParameters() # since we are using Adam instead of RMSProp, we adjust the learning rate as well agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Empty agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()] agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1/math.sqrt(2)] agent_params.network_wrappers['main'].clip_gradients = 10 ############### # Environment # ############### env_params = Atari() env_params.level = SingleLevelSelection(atari_deterministic_v4) vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = ['breakout', 'pong', 'alien'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)