from rl_coach.agents.dfp_agent import DFPAgentParameters, HandlingTargetsAfterEpisodeEnd from rl_coach.base_parameters import VisualizationParameters from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod, MaxDumpMethod from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.environments.doom_environment import DoomEnvironmentParameters #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50) schedule_params.evaluation_steps = EnvironmentEpisodes(3) # There is no heatup for DFP. heatup length is determined according to batch size. See below. ######### # Agent # ######### agent_params = DFPAgentParameters() schedule_params.heatup_steps = EnvironmentSteps(agent_params.network_wrappers['main'].batch_size) agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0, 10000) agent_params.exploration.evaluation_epsilon = 0 # this works better than the default which is 64 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1) agent_params.algorithm.use_accumulated_reward_as_measurement = True agent_params.algorithm.goal_vector = [0, 1] # ammo, accumulated_reward agent_params.algorithm.handling_targets_after_episode_end = HandlingTargetsAfterEpisodeEnd.LastStep ############### # Environment # ############### env_params = DoomEnvironmentParameters() env_params.level = 'basic' vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)