from rl_coach.architectures.tensorflow_components.heads.dueling_q_head import DuelingQHeadParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.environments.gym_environment import GymEnvironmentParameters from rl_coach.filters.filter import NoInputFilter, NoOutputFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import LinearSchedule from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps N = 20 num_output_head_copies = 20 #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentEpisodes(2000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(N) #################### # DQN Agent Params # #################### agent_params = DDQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()] agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000) agent_params.algorithm.discount = 0.99 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4) agent_params.exploration.epsilon_schedule = LinearSchedule(1, 0.1, (N+7)*2000) agent_params.input_filter = NoInputFilter() agent_params.output_filter = NoOutputFilter() ############### # Environment # ############### env_params = GymEnvironmentParameters() env_params.level = 'rl_coach.environments.toy_problems.exploration_chain:ExplorationChain' env_params.additional_simulator_parameters = {'chain_length': N, 'max_steps': N+7} vis_params = VisualizationParameters() # preset_validation_params = PresetValidationParameters() # preset_validation_params.test = True # preset_validation_params.min_reward_threshold = 1600 # preset_validation_params.max_episodes_to_achieve_reward = 70 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params,) # preset_validation_params=preset_validation_params)