from rl_coach.agents.bootstrapped_dqn_agent import BootstrappedDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters from rl_coach.environments.gym_environment import Mujoco from rl_coach.filters.filter import NoInputFilter, NoOutputFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import ConstantSchedule from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps from rl_coach.exploration_policies.ucb import UCBParameters N = 20 num_output_head_copies = 20 #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentEpisodes(2000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(N) #################### # DQN Agent Params # #################### agent_params = BootstrappedDQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.00025 agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000) agent_params.algorithm.discount = 0.99 agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4) agent_params.network_wrappers['main'].num_output_head_copies = num_output_head_copies agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1.0/num_output_head_copies]*num_output_head_copies agent_params.exploration = UCBParameters() agent_params.exploration.bootstrapped_data_sharing_probability = 1.0 agent_params.exploration.architecture_num_q_heads = num_output_head_copies agent_params.exploration.epsilon_schedule = ConstantSchedule(0) agent_params.exploration.lamb = 10 agent_params.input_filter = NoInputFilter() agent_params.output_filter = NoOutputFilter() ############### # Environment # ############### env_params = Mujoco() env_params.level = 'rl_coach.environments.toy_problems.exploration_chain:ExplorationChain' env_params.additional_simulator_parameters = {'chain_length': N, 'max_steps': N+7} vis_params = VisualizationParameters() graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)