from rl_coach.agents.policy_gradients_agent import PolicyGradientsAgentParameters from rl_coach.base_parameters import VisualizationParameters from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod from rl_coach.environments.gym_environment import Mujoco, MujocoInputFilter from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.filters.reward.reward_rescale_filter import RewardRescaleFilter #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50) schedule_params.evaluation_steps = EnvironmentEpisodes(3) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = PolicyGradientsAgentParameters() agent_params.algorithm.apply_gradients_every_x_episodes = 5 agent_params.algorithm.num_steps_between_gradient_updates = 20000 agent_params.network_wrappers['main'].learning_rate = 0.0005 agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/20.)) agent_params.input_filter.add_observation_filter('observation', 'normalize', ObservationNormalizationFilter()) ############### # Environment # ############### env_params = Mujoco() env_params.level = "InvertedPendulum-v2" vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)