from rl_coach.architectures.tensorflow_components.architecture import Dense from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection from rl_coach.environments.gym_environment import Mujoco, mujoco_v2 from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.agents.naf_agent import NAFAgentParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase, GradientClippingMethod #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20) schedule_params.evaluation_steps = EnvironmentEpisodes(1) schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = NAFAgentParameters() agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense([200])] agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([200])] agent_params.network_wrappers['main'].clip_gradients = 1000 agent_params.network_wrappers['main'].gradients_clipping_method = GradientClippingMethod.ClipByValue ############### # Environment # ############### env_params = Mujoco() env_params.level = SingleLevelSelection(mujoco_v2) vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False # this preset is currently broken - no test ######## # Test # ######## preset_validation_params = PresetValidationParameters() # preset_validation_params.test = True # preset_validation_params.min_reward_threshold = 200 # preset_validation_params.max_episodes_to_achieve_reward = 600 # preset_validation_params.reward_test_level = 'inverted_pendulum' preset_validation_params.trace_test_levels = ['inverted_pendulum', 'hopper'] graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)